Math, asked by vishesh5854, 10 months ago

prove this please fast​

Attachments:

Answers

Answered by MяMαgıcıαη
1

Answer:

refer to the above attachment for the solution

Attachments:
Answered by codiepienagoya
0

Proving \frac{x^2}{a^2}+\frac{y^2}{b^2}\ =\ 2\\\\

Step-by-step explanation:

\ Given \ that:\\\\

\frac{x}{a}\ sin\theta -\frac{y}{b}\ cos\theta =1 \  \ \  and  \  \ \frac{x}{a}\ cos\theta +\frac{y}{b}\ sin\theta =1 \\\\

\ find: \\\\ \frac{x^2}{a^2}+ \frac{y^2}{b^2}\ = \ 2

\frac{x}{a}\ sin\theta -\frac{y}{b}\ cos\theta =1 \ ............(i) \\\\ \frac{x}{a}\ cos\theta +\frac{y}{b}\ sin\theta =1 \............(ii)\\\\

\ square \ the  \ equation  \ and  \ then \ add

equation ...........(i)

(\frac{x}{a}\ sin\theta -\frac{y}{b}\ cos\theta)^2 =(1)^2\\\\(\frac{x}{a}\ sin\theta)^2 +(\frac{y}{b}\ cos\theta)^2 -2 \frac{x}{a}\ sin\theta\frac{y}{b}\ cos\theta = 1\\\\(\frac{x^2}{a^2}\ sin^2\theta +\frac{y^2}{b^2}\ cos^2\theta -2 \frac{x}{a}\ sin\theta\frac{y}{b}\ cos\theta)=1\\\\

equation ...........(ii)

(\frac{x}{a}\ cos\theta +\frac{y}{b}\ sin\theta)^2 = (1)^2 \\\\(\frac{x}{a}\ cos\theta)^2 +(\frac{y}{b}\ sin\theta)^2 +2 \frac{x}{a}\ cos\theta\frac{y}{b}\ sin\theta = 1\\\\(\frac{x^2}{a^2}\ cos^2\theta +\frac{y^2}{b^2}\ sin^2\theta +2 \frac{x}{a}\ cos\theta\frac{y}{b}\ sin\theta)=1\\\\

add both equation (i) + (ii)

(\frac{x^2}{a^2}\ sin^2\theta +\frac{y^2}{b^2}\ cos^2\theta -2 \frac{x}{a}\ sin\theta\frac{y}{b}\ cos\theta)+(\frac{x^2}{a^2}\ cos^2\theta +\frac{y^2}{b^2}\ sin^2\theta +2 \frac{x}{a}\ cos\theta\frac{y}{b}\ sin\theta)=1+1\\\\

\frac{x^2}{a^2}\ sin^2\theta +\frac{y^2}{b^2}\ cos^2\theta -2 \frac{x}{a}\ sin\theta\frac{y}{b}\ cos\theta+ \frac{x^2}{a^2}\ cos^2\theta +\frac{y^2}{b^2}\ sin^2\theta +2 \frac{x}{a}\ cos\theta\frac{y}{b}\ sin\theta\ =\ 2\\\\

\frac{x^2}{a^2}\ sin^2\theta +\frac{y^2}{b^2}\ cos^2\theta + \frac{x^2}{a^2}\ cos^2\theta +\frac{y^2}{b^2}\ sin^2\theta\ =\ 2\\\\\frac{x^2}{a^2}\ sin^2\theta + \frac{x^2}{a^2}\ cos^2\theta+\frac{y^2}{b^2}\ cos^2\theta  +\frac{y^2}{b^2}\ sin^2\theta\ =\ 2\\\\\frac{x^2}{a^2}(\ sin^2\theta +\ cos^2\theta)+\frac{y^2}{b^2}(\ cos^2\theta + \ sin^2\theta)\ =\ 2\\\\\therefore \ sin^2\theta +\ cos^2\theta = 1\\\\\frac{x^2}{a^2}+\frac{y^2}{b^2}\ =\ 2\\\\

proved..

Learn more:

  • Prove: https://brainly.in/question/8157059
Similar questions