Math, asked by jungkookie08cutipie, 21 days ago

prove this please full step required ​

Attachments:

Answers

Answered by mathdude500
2

\large\underline{\sf{Given- }}

\boxed{ \rm{ abc + 1 = 0}}

\large\underline{\sf{To\:prove - }}

\boxed{ \rm{  \frac{1}{1 - a -  {b}^{ - 1} } +  \frac{1}{1 - b -  {c}^{ - 1} }  +  \frac{1}{1 - c -  {a}^{ - 1} } = 1 }}

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:abc + 1 = 0

\bf\implies \:abc =  - 1 -  -  - (1)

Consider,

\rm :\longmapsto\:\dfrac{1}{1 - a -  {b}^{ - 1} } +  \dfrac{1}{1 - b -  {c}^{ - 1} }  +  \dfrac{1}{1 - c -  {a}^{ - 1} }

Consider first term

\rm :\longmapsto\:\dfrac{1}{1 - a -  {b}^{ - 1} }

\rm \:  =  \:  \: \dfrac{1}{1 - a - \dfrac{1}{b} }

\rm \:  =  \:  \: \dfrac{b}{b - ab -  1}

Now, Consider second term

\rm :\longmapsto\:  \dfrac{1}{1 - b -  {c}^{ - 1} }

\rm \:  =  \:  \: \dfrac{1}{1 - b - \dfrac{1}{c} }

As it is given that,

\boxed{ \rm{ abc =  - 1\rm  \: \implies\:ab =  -  \frac{1}{c}}}

So, using this, we get

\rm \:  =  \:  \: \dfrac{1}{1 - b + ab }

Now, Consider third term,

\rm :\longmapsto\: \dfrac{1}{1 - c -  {a}^{ - 1} }

As it is given that

\boxed{ \rm{ abc =  - 1\rm  \: \implies\:c =  -  \frac{1}{ab}}}

\rm \:  =  \:  \: \dfrac{1}{1  + \dfrac{1}{ab}  - \dfrac{1}{a} }

\rm \:  =  \:  \: \dfrac{ab}{ab + 1 - b}

Now, Consider

\rm :\longmapsto\:\dfrac{1}{1 - a -  {b}^{ - 1} } +  \dfrac{1}{1 - b -  {c}^{ - 1} }  +  \dfrac{1}{1 - c -  {a}^{ - 1} }

\rm \:  =  \:  \: \dfrac{b}{b - ab - 1}  +  \dfrac{1}{1 - b + ab}  +  \dfrac{ab}{ab + 1 - b}

\rm \:  =  \:  \: \dfrac{b}{ - (1 - b + ab)}  +  \dfrac{1}{1 - b + ab}  +  \dfrac{ab}{1 - b + ab}

\rm \:  =  \:  \: \dfrac{ - b}{1 - b + ab}  +  \dfrac{1}{1 - b + ab}  +  \dfrac{ab}{1 - b + ab}

\rm \:  =  \:  \: \dfrac{ - b + 1 + ab}{1 - b + ab}

\rm \:  =  \:  \: \dfrac{ 1 - b + ab}{1 - b + ab}

\rm \:  =  \:  \: 1

Hence, Proved

Concept Used :-

The Concept Used to solve this type of problem is to reduce the three variables to two variables.

Similar questions