Math, asked by hbhatnagar917, 1 year ago

prove this please. I will marks as brainliest ​

Attachments:

Answers

Answered by siddhartharao77
2

Step-by-step explanation:

(i) Given : tanθ + sinθ = m.

On squaring both sides, we get

⇒ (tanθ + sinθ)² = m²

⇒ tan²θ + sin²θ + 2tanθsinθ = m²

(ii) Given: tanθ - sinθ = n.

On squaring both sides, we get

⇒ tan²θ + sin²θ - 2tanθsinθ = n²

On subtracting (ii) from (i), we get

⇒ m² - n² = tan²θ + sin²θ + 2tanθsinθ - tan²θ - sin²θ + 2tanθsinθ

                = 4tanθsinθ

                = 4√tan²θsin²θ

                = 4√(sin²θ/cos²θ)(1 - cos²θ)

                = 4√sin²θ(1-cos²θ)/cos²θ

                = 4√(sin²θ - sin²θcos²θ)/cos²θ

                = 4√(sin²θ/cos²θ - sin²θ)

                = 4√tan²θ - sin²θ

                = 4√(tanθ + sinθ)(tanθ - sinθ)

                = 4√mn.

Hope it helps!

Answered by Siddharta7
0

tanθ-sinθ=n

m+n = tanθ+sinθ+tanθ-sinθ=2tanθ

m-n = tanθ+sinθ-tanθ+sinθ=2sinθ

mn = (tanθ+sinθ)(tanθ-sinθ)

= tan²θ-sin²θ

m²-n²

=(m+n)(m-n)

=2tanθ.2sinθ

=4sinθtanθ--------(1)

-----------4√mn-----------

=4√(tan²θ-sin²θ)

=4√(sin²θ/cos²θ-sin²θ)

=4√sin²θ(1/cos²θ-1)

=4sinθ√(1-cos²θ)/cos²θ

=4sinθ/cosθ√sin²θ [∵, sin²θ+cos²θ=1]

=4sinθtanθ-----------(1)

from--(1) and----(2)

m²-n² = 4√mn

Similar questions