Math, asked by ronitgupta143, 9 months ago

prove this plz

follow me ​

Attachments:

Answers

Answered by rishu6845
8

To prove ---->

 \dfrac{cos9x - cos5x}{sin17x - sin3x} =  -  \dfrac{sin2x}{cos10x}

Concept use---->

1)

cos \alpha  - cos \beta  =  - 2sin( \dfrac{ \alpha  +  \beta }{2} ) \: sin( \dfrac{ \alpha  -  \beta }{2}

2)

sin \alpha  - sin \beta  = 2 \: cos( \dfrac{ \alpha  +  \beta }{2}) \: sin( \dfrac{ \alpha  -  \beta }{2})

Proof ----> LHS

 =  \dfrac{cos9x - cos5x}{sin17x - sin3x}

 =  \dfrac{ - 2 \: sin( \dfrac{9x + 5x}{2}) \: sin( \dfrac{9x - 5x}{2})  }{2 \: cos( \dfrac{17x + 3x}{2}) \: sin( \dfrac{17x - 3x}{2})  }

 2 \: is \: cancel \: out \: from \: numerator \: and \: denominator

 =  -  \dfrac{sin( \dfrac{14x}{2}) \: sin( \dfrac{4x}{2})  }{cos( \dfrac{20x}{2}) \: sin( \dfrac{14x}{2})  }

 =  -  \dfrac{sin7x \:  \:  \: sin2x}{cos10x \:  \:  \: sin7x}  \\ \\ sin7x \: cancel \: out \: from \: numerator \: and \: denominator  \\  =  -  \dfrac{sin2x}{cos10x}

= RHS

Answered by Anonymous
3

\huge\boxed{\fcolorbox{violet}{violet}{Answer}}

Attachments:
Similar questions