Math, asked by shivam123476, 1 year ago

prove this question​

Attachments:

Answers

Answered by ihrishi
0

Step-by-step explanation:

sin( \alpha  + 30 \degree) = cos \alpha  + sin( \alpha   -  30 \degree)  \\ RHS = cos \alpha  + sin( \alpha   -  30 \degree) \\  = cos \alpha  +  sin \alpha \:  cos 30\degree -  cos \alpha \:  sin 30\degree \\   = cos \alpha  -  cos \alpha \:  sin 30\degree +  sin \alpha \:  cos 30\degree  \\   = cos \alpha  (1-  sin 30\degree) \: +  sin \alpha \:  cos 30\degree  \\  = cos \alpha  (1-   \frac{1}{2} ) \: +  sin \alpha \:  cos 30\degree  \\ = cos \alpha  (\frac{1}{2} ) \: +  sin \alpha \:  cos 30\degree  \\ = cos \alpha  sin 30\degree \: +  sin \alpha \:  cos 30\degree  \\  = sin( \alpha  + 30 \degree) \\  = LHS \\ thus \: proved. \\

Similar questions