Prove this question !!!
CLASS 10TH
CHAPTER TRIGONOMETRY !!!
THANKS ❤️
Answers
Hope it helps you.
Answer:
Step-by-step explanation:
L. H. S=cosA-sinA+1/cosA+sinA-1
Divide the equation with sinA
It will become like this
cosA/sinA-sinA/sin+1/sinA over cosA/sinA+sinA/sinA+1/sinA
Now use identities, cosA/sinA=cotA
1/sinA=cosecA
sinA/sinA=1
=CotA-1+cosecA/cotA+1-cosecA
={CotA-(1-cosecA) }{cotA-(1-cosecA) }/{cotA+(1-cosecA) }{cot A-(1-cosecA) }
=(cotA-1+cosecA) ^2/(cotA) ^2-(1-cosecA) ^2
Use identity a^2+b^2+c^2-2ab-2bc-2ac
=cot^2A+1+cosec^2A-2cotA-2cosecA+2cotAcosecA/cot^2A-(1+cosec^2A-2cosecA)
=2cosec^2A+2cotAcosecA-2cotA-2cosecA/cot^2A-1-cosec^2A+2cosecA
=2cosecA(cosecA+cotA) -2(cotA+cosecA) /cot^2A-cosec^2A-1+2cosecA
=(cosecA+cotA) (2cosecA-2) /-1-1+2cosecA
=(cosecA+cotA) (2cosecA-2) /(2cosecA-2)
Here we cancelled (2cosecA-2) with (2cosecA-2)
=cosecA+cotA
=R.H.S