Math, asked by shirsty1694, 5 months ago

prove this question of class 11th. ​

Attachments:

Answers

Answered by bhawyamishra006
0

Answer:

im in 7th sórry

Answered by mathdude500
0

\huge\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Answer}}}}}}}} \\ \large\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Your~answer↓}}}}}}}}

To solve :-

 \frac{tan (\frac{3\pi}{4}   + θ) - tan( \frac{3\pi}{4}  -  θ)}{(cot( \frac{3\pi}{4}  - θ) - cot( \frac{3\pi}{4} + θ))tan (\frac{3\pi}{4}   + θ)  tan( \frac{3\pi}{4}  -  θ) }

Solution:-

let \: \frac{3\pi}{4}   + θ = x \: and \:   \frac{3\pi}{4}  -  θ \:  = y

 \frac{tan (\frac{3\pi}{4}   + θ) - tan( \frac{3\pi}{4}  -  θ)}{(cot( \frac{3\pi}{4}  - θ) - cot( \frac{3\pi}{4} + θ))tan (\frac{3\pi}{4}   + θ)  tan( \frac{3\pi}{4}  -  θ) }  \\ can \: be \: now \: rewritten \: as \:

 \frac{tanx - tany}{(coty - cotx)tanx \times tany}  \\  =  \frac{tanx - tany}{( \frac{1}{tany}  -  \frac{1}{tany} )tanx \: tany}  \\  =  \frac{tanx - tany}{ \frac{(tanx - tany)}{tanx \: tany} \times  tanx  \: tany}

\large\bold\red{1}

\huge \fcolorbox{black}{cyan}{Hope it helps U}

\boxed{ \huge{ \mathfrak{Mark \:  me \:  as  \: Brainliest}}}

Similar questions