prove this question please
Answers
Step-by-step explanation:
Given: (1 + cot²Ø) + (1 + 1/cot²Ø) = 1/(sin²Ø - sin⁴Ø). We need to prove that LHS is equal to the RHS.
Taking LHS,
→ (1 + cot²Ø) + (1 + 1/cot²Ø)
Now, cotØ = cosØ/sinØ
→ (1 + cos²Ø/sin²Ø) + (1 + 1/(cos²Ø/sin²Ø))
→ (sin²Ø + cos²Ø)/sin²Ø + (1 + 1 × sin²Ø/cos²Ø)
Since, sin²Ø + cos²Ø = 1. So,
→ 1/sin²Ø + (1 + sin²Ø/cos²Ø)
→ 1/sin²Ø + (cos²Ø + sin²Ø)/cos²Ø
→ 1/sin²Ø + 1/cos²Ø
→ (cos²Ø + sin²Ø)/sin²Ø.cos²Ø
→ 1/sin²Ø.cos²Ø
Used formula: cos²Ø = 1 - sin²Ø
→ 1/(1 - sin²Ø).sin²Ø
→ 1/(sin²Ø - sin⁴Ø)
Hence, proved.
TRIGONOMETRY FORMULAS:
secØ = 1/cosØ, cosØ = 1/secØ
cosecØ = 1/sinØ, sinØ = 1/cosecØ
tanØ = sinØ/cosØ, cotØ = cosØ/sinØ
cotØ = 1/tanØ, tanØ = 1/cotØ
sin²Ø + cos²Ø = 1
tan²Ø + 1 = sec²Ø
1 + cot²Ø = cosec²Ø
sinØ = cos(90° - Ø)
cosØ = sin(90° - Ø)
tanØ = cot(90° - Ø)