Math, asked by BrainlySunShine, 1 year ago

Prove this❤️❤️❤️
 \sqrt{ {sec}^{2}  \:  +  {cosec}^{2} }  \:  = tan \:  + cot

Answers

Answered by pranay0144
6

Answer:

Hey mate i will help u

Refers with attachments

Attachments:
Answered by Anonymous
27

SOLUTION:-

L.H.S

  \sqrt{sec {}^{2} \theta + cosec {}^{2} \theta  }  \\  =  >  \sqrt{ \frac{1}{cos {}^{2} \theta } +  \frac{1}{ {sin}^{2} \theta }  }  \\  \\  =  >  \sqrt{ \frac{ {sin}^{2}  \theta +  {cos}^{2}  \theta}{ {sin}^{2}  \theta \times cos {}^{2}  \theta} }  \\  \\  =  >  \sqrt{ \frac{1}{ {sin}^{2} \theta. {cos}^{2}   \theta} }  \\  \\  =  >  \frac{1}{sin \theta.cos \theta}

R.H.S

tan \theta \:   + cot \theta \\  =  >  \frac{sin \theta}{cos \theta}  +  \frac{cos \theta}{sin \theta}  \\  \\  =  >  \frac{ {sin}^{2}  \theta +  {cos}^{2}  \theta}{sin \theta.cos \theta}  \\  \\  =  >  \frac{1}{sin \theta.cos \theta}

So, L.H.S = R.H.S

hope it helps ☺️

Similar questions