prove this trignometric identity please
Answers
Answer:
(sec theta + tan theta -1)/(tan theta - sec theta +1)
= cos theta / 1-sin theta
LHS = (sec theta + tan theta -(sec²theta - tan²theta)/(tan theta - sec theta +1)
= (sec theta + tan theta)(1 - sec theta + tan theta)
/( tan theta - sec theta +1)
= sec theta + tan theta
= 1/ cos theta + sin theta /cos theta
= (1+sin theta)/cos theta
= (1+sin theta) x (1 -sin theta) / (cos theta x (1 -sin theta))
= (1-sin²theta)/ (cos theta x (1-sin theta))
= cos² theta/( cos theta x (1-sin theta))
= cos theta/ (1-sin theta)
hence proved....
Solution :-
Consider LHS
Substituting 1 = sec² θ - tan² θ in numerator
Expanding sec² θ - tan² θ = (sec θ + tan θ)(sec θ - tan θ)
Taking (sec θ + tan θ) common in numerator
By rearranging the terms
[ Because tanθ = sinθ/cosθ and secθ = 1/cosθ ]
Multiplying by (1 - sinθ) with numerator and denominator
[ Because (a + b)(a - b) = a² - b² ]
[ Because 1 - sin²θ = cos²θ ]
= RHS