Math, asked by yashikanotiyal, 1 year ago

prove this trigonometric eq.​

Attachments:

Answers

Answered by Anonymous
4

\Huge{\underline{\underline{\mathfrak{Answer \colon}}}}

To Prove

  \large { \sf{\sqrt{ \frac{1 + sin \theta}{1 - sin \theta} }  = sec \theta \:  + tan \theta}} \\

LHS

 \sf{ \sqrt{ \frac{1 + sin \theta}{1 - sin \theta} } } \\  \\  =   \sf{\sqrt{ \frac{1 + sin \theta}{1 \:  -  sin  \theta \: } \times  \frac{1 + sin \theta}{1 + sin \theta}  } } \\  \\  =   \sf{\sqrt{ \frac{(1 + sin \theta) {}^{2} }{1 - sin {}^{2} \theta } } }

Since,

sin²x + cos²x = 1 » 1 - sin²x = cos²x

 =  \sf{ \sqrt{( \frac{1 +  sin \theta}{cos \theta} }) {}^{2}  } \\  \\  =   \sf{\frac{1 + sin \theta}{cos \theta}}  \\  \\   =  \sf{ \frac{1}{cos \theta} +  \frac{sin \theta}{cos \theta}  } \\  \\   =  \: \huge{ \sf{sec \theta + tan \theta}}

Hence,proved

Answered by RvChaudharY50
51

\huge\underline\mathfrak\green{Hope\:it\:Helps\:You}

Attachments:
Similar questions