Math, asked by aulakhsaab402, 1 month ago

prove this trigonometric equation​

Attachments:

Answers

Answered by abhi569
2

⇒ sinθtanθ/(1 - cosθ)

⇒ sinθ(sinθ/cosθ) / (1 - cosθ)

                   [ 1/cosA = secA ]

⇒ sinθ(sinθsecθ) / (1 - cosθ)

sin²θsecθ / (1 - cosθ)

                   [ sin²A = 1 - cos²A ]

(1 - cos²θ)secθ /(1 - cosθ)

⇒ (1 - cosθ)(1 + cosθ)secθ/(1 - cosθ)

⇒ (1 + cosθ)secθ

⇒ secθ + cosθ.secθ

⇒ secθ + 1              {cosθ.secθ = 1}

Answered by amankumaraman11
3

 \frac{ \sin \theta \tan\theta}{1 -  \cos\theta }  = 1 +  \sec\theta  \\  \\   \\ \text{Solving the LHS  } \\ \\  \implies \tt \frac{ \sin\theta \bigg \{ \dfrac{ \sin\theta }{ \cos\theta }  \bigg \}}{1 -  \cos\theta }  \\  \\  \implies \frac{ \sin\theta \sin\theta }{  \cos\theta \{1 -  \cos(\theta)  \}}  \\  \\  \\   \implies \tt \frac{ { \sin }^{2}\theta }{ \cos \theta\{ 1 -  \cos\theta \} } \\  \\  \\   \implies \tt \frac{1 -   { \cos}^{2}  \theta}{\cos  \theta \{ 1 -  \cos\theta \}}  \\  \\  \\   \implies \tt \frac{(1  +   \cos\theta)(1 -  \cos\theta)}{\cos  \theta (1 -  \cos\theta )}  \\  \\  \\  \implies \tt \frac{(1  +   \cos\theta) \cancel{(1 -  \cos\theta)}}{\cos  \theta \cancel{ (1 -  \cos\theta )}}  \\  \\  \\  \implies \tt  \frac{1 + \cos\theta}{\cos\theta}  \\  \\  \implies \tt \frac{1}{ \cos\theta}  +  \frac{\cos\theta}{\cos\theta}  \\  \\ \implies \tt  \sec\theta + 1 \\  \implies \sf 1 +  \sec\theta \\

Thus,

LHS = RHS

 \\ \\ \\ \\

Used Ratios & identities of trigonometry :

  • tanθ = sinθ/cosθ

  • sin²θ + cos²θ = 1

→ sin²θ = 1 - cos²θ

  • cosθ = 1/secθ

  • sec = 1/cosθ

Other important ratios of trigonometry :

  • sinθ = 1/cosecθ

  • cotθ = 1/tanθ = cosθ/sinθ

  • sec²θ - tan²θ = 1
  • cosec²θ - cot²θ = 1

  • sec²θ = 1 + tan²θ
  • cosec²θ = 1 + cot²θ

  • sin²θ = 1 - cos²θ
Similar questions