prove this trigonometric equation
Attachments:
Answers
Answered by
2
⇒ sinθtanθ/(1 - cosθ)
⇒ sinθ(sinθ/cosθ) / (1 - cosθ)
[ 1/cosA = secA ]
⇒ sinθ(sinθsecθ) / (1 - cosθ)
⇒ sin²θsecθ / (1 - cosθ)
[ sin²A = 1 - cos²A ]
⇒ (1 - cos²θ)secθ /(1 - cosθ)
⇒ (1 - cosθ)(1 + cosθ)secθ/(1 - cosθ)
⇒ (1 + cosθ)secθ
⇒ secθ + cosθ.secθ
⇒ secθ + 1 {cosθ.secθ = 1}
Answered by
3
Thus,
LHS = RHS
Used Ratios & identities of trigonometry :
- tanθ = sinθ/cosθ
- sin²θ + cos²θ = 1
→ sin²θ = 1 - cos²θ
- cosθ = 1/secθ
- sec = 1/cosθ
Other important ratios of trigonometry :
- sinθ = 1/cosecθ
- cotθ = 1/tanθ = cosθ/sinθ
- sec²θ - tan²θ = 1
- cosec²θ - cot²θ = 1
- sec²θ = 1 + tan²θ
- cosec²θ = 1 + cot²θ
- sin²θ = 1 - cos²θ
Similar questions