Math, asked by aulakhsaab402, 1 month ago

prove this trigonometric equation​

Attachments:

Answers

Answered by amishagoyenka1400
1

Answer:

check it out... this is done correctly for 3 marks question

Attachments:
Answered by mathdude500
6

\large\underline{\sf{Given- }}

\rm :\longmapsto\: {tan}^{2}  \theta \: =  {cos}^{2}\phi \: -  {sin}^{2}\phi \:

\large\underline{\sf{To\:Prove - }}

\rm :\longmapsto\: {tan}^{2}\phi \: =  {cos}^{2}\theta \: -  {sin}^{2}\theta \:

\begin{gathered}\Large{\sf{{\underline{Formula\:Used - }}}}  \end{gathered}

 \boxed{ \bf{ \: 1 +  {tan}^{2}x =  {sec}^{2}x}}

 \boxed{ \bf{ \: 1 -  {sin}^{2}x =  {cos}^{2}x}}

 \boxed{ \bf{ \: cosx = \dfrac{1}{secx}}}

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: {tan}^{2}  \theta \: =  {cos}^{2}\phi \: -  {sin}^{2}\phi \:

  • On adding '1' on both sides, we get

\rm :\longmapsto\: 1 + {tan}^{2}  \theta \: = 1 +  {cos}^{2}\phi \: -  {sin}^{2}\phi \:

\rm :\longmapsto\: {sec}^{2}  \theta \: =  {cos}^{2}\phi \: + (1 -  {sin}^{2}\phi \:)

\rm :\longmapsto\: {sec}^{2}  \theta \: =  {cos}^{2}\phi \:  +   {cos}^{2}\phi \:

\rm :\longmapsto\: {sec}^{2}  \theta \: =  2{cos}^{2}\phi \:

\rm :\implies\:\dfrac{1}{ {cos}^{2}\theta \: }  = \dfrac{2}{ {sec}^{2} \phi \:}

\rm :\longmapsto\: {sec}^{2}\phi \: = 2 {cos}^{2}\theta \:

\rm :\longmapsto\:1 +  {tan}^{2}\phi \: =  {cos}^{2}\theta \: +  {cos}^{2}\theta \:

\rm :\longmapsto\: \cancel1 +  {tan}^{2}\phi \: =  {cos}^{2}\theta \: +   \cancel1 -   {sin}^{2}\theta \:

\rm :\longmapsto\: {tan}^{2}\phi \: =  {cos}^{2}\theta \: -  {sin}^{2}\theta \:

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

 \boxed{ \bf{ \:  {sin}^{2}x +  {cos}^{2}  x = 1}}

 \boxed{ \bf{ \:  {cosec}^{2} x -  {cot}^{2} x = 1}}

 \boxed{ \bf{ \:  {sec}^{2} x -  {tan}^{2} x = 1}}

 \boxed{ \bf{ \: cosecx = \dfrac{1}{sinx} }}

 \boxed{ \bf{ \: tanx = \dfrac{1}{cotx}  = \dfrac{sinx}{cosx} }}

Similar questions