prove this trigonometry
Attachments:
Answers
Answered by
0
Answer:
Step-by-step explanation:
Take theta=x and alpha as y for convenience,
=> cos4x/cos2y+sin4x/sin2y=1
(take LCM)
=> cos4xsin2y+sin4xcos2y/cos2ysin2y=1
=> cos4xsin2y+sin4xcos2y=cos2ysin2y
(We know that, sin2y+cos2y=1, => sin2y=1-cos2y)
=> cos4x(1-cos2y)+cos2ysin4x= cos2y(1-cos2y)
=> cos4x-cos4xcos2y+sin4xcos2y=cos2y-cos4y
(sin2x=1-cos2x)
=> cos4x-cos4xcos2y+cos2y [(1-cos2x)]^2= cos2y-cos4y
=> cos4x-cos4xcos2y+cos2y(1+cos4x-2cosx)= cos2y-cos4y
=> cos4x-cos4xcos2y+cos2y+cos4xcos2y-2cos2ycos2x=cos2y-cos4y
(cancel the common terms)
=> cos4x-2cos2ycos2x+cos4y=0
=> (cos2x-cos2y)^2=0
=> So, cos2y=cos2x......1
and similarly,
1-sin2y=1-sin2x
=> sin2y=sin2x
So,
cos2x.cos2x/cos2y+sin2x.sin2y/sin2y=1.......
Hence, proved!
Similar questions