Math, asked by manan4573, 1 year ago

Prove this,Trigonometry,Answer it Please​

Attachments:

Answers

Answered by mddilshad11ab
5

Step-by-step explanation:

 \sqrt{ \frac{cosec - 1}{cosec + 1} }  +  \sqrt{ \frac{cosec  + 1}{cosec - 1} }  \\ here \: we \: have \: to \: rationalize \\  \\  \sqrt{ \frac{cosec - 1}{cosec + 1}  \times  \frac{cosec - 1}{cosec - 1} }  \\  \\  \sqrt{ \frac{(cosec - 1) {}^{2} }{cosec {}^{2}  - 1} }  =  \sqrt{ \frac{(cosec {}^{2}  - 1) {}^{2} }{cot {}^{2} } }  \\  \\  \frac{cosec - 1}{cot}  +  \sqrt{ \frac{cosec + 1}{cosec - 1} \times  \frac{cosec + 1}{cosec + 1}  }  \\  \\  \frac{cosec - 1}{cot}  +  \sqrt{ \frac{(cosec + 1) {}^{2} }{cosec {}^{2} - 1 } }  \\  \\  \frac{cosec - 1}{cot}  +  \frac{cosec + 1}{cot}  \\  \\  \frac{cosec - 1 + cosec + 1}{cot}  \\  \\  \frac{2cosec}{cot}  =  \frac{2 \frac{1}{ \sin} }{ \frac{cos}{sin} }  =  \frac{2}{sin}  \times  \frac{sin}{cos}  \\  \\  \frac{2}{cos}  = 2sec

i hope it will be helpful so please mark me brainlist

Similar questions