Math, asked by FazeelKarkhi, 9 months ago

Prove this trigonometry question.​

Attachments:

Answers

Answered by Rohit18Bhadauria
58

To Prove:

\rm{2cos\dfrac{\pi}{13}cos\dfrac{9\pi}{13}+cos\dfrac{3\pi}{13}+cos\dfrac{5\pi}{13}=0}

Solution:

We know that,

\pink{\underline{\boxed{\bf{cosC+cosD=2cos\dfrac{C+D}{2}cos\dfrac{C-D}{2}}}}}

\purple{\underline{\boxed{\bf{cos(-x)=cosx}}}}

\orange{\underline{\boxed{\bf{cos\dfrac{\pi}{2}=0}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━

Here,

\rm{L.H.S.=2cos\dfrac{\pi}{13}cos\dfrac{9\pi}{13}+cos\dfrac{3\pi}{13}+cos\dfrac{5\pi}{13}}

\sf{L.H.S.=2cos\dfrac{\pi}{13}cos\dfrac{9\pi}{13}+2cos\dfrac{\frac{3\pi+5\pi}{13}}{2}cos\dfrac{\frac{3\pi-5\pi}{13}}{2}}

\sf{L.H.S.=2cos\dfrac{\pi}{13}cos\dfrac{9\pi}{13}+2cos\dfrac{8\pi}{2\times13}cos\dfrac{-2\pi}{2\times13}}

\rm{L.H.S.=2cos\dfrac{\pi}{13}cos\dfrac{9\pi}{13}+2cos\dfrac{4\pi}{13}cos\dfrac{-\pi}{13}}

\rm{L.H.S.=2cos\dfrac{\pi}{13}cos\dfrac{9\pi}{13}+2cos\dfrac{4\pi}{13}cos\dfrac{\pi}{13}}

\rm{L.H.S.=2cos\dfrac{\pi}{13}\bigg(cos\dfrac{9\pi}{13}+2cos\dfrac{4\pi}{13}\bigg)}

\rm{L.H.S.=2cos\dfrac{\pi}{13}\bigg(2cos\dfrac{\frac{9\pi+4\pi}{13}}{2}cos\dfrac{\frac{9\pi-4\pi}{13}}{2}\bigg)}

\rm{L.H.S.=2cos\dfrac{\pi}{13}\bigg(2cos\dfrac{13\pi}{2\times13}cos\dfrac{5\pi}{2\times13}\bigg)}

\rm{L.H.S.=2cos\dfrac{\pi}{13}\bigg(2cos\dfrac{\pi}{2}cos\dfrac{5\pi}{26}\bigg)}

\rm{L.H.S.=2cos\dfrac{\pi}{13}\bigg(2(0)cos\dfrac{5\pi}{26}\bigg)}

\rm{L.H.S.=2cos\dfrac{\pi}{13}\bigg(0\bigg)}

\rm{L.H.S.=0}

\rm\green{L.H.S.=R.H.S.}

\bigstar\underline{\underline{\rm\red{Hence\ Proved}}}

Answered by MuskanJoshi14
1

Step-by-step explanation:

To Prove:

\rm{2cos\dfrac{\pi}{13}cos\dfrac{9\pi}{13}+cos\dfrac{3\pi}{13}+cos\dfrac{5\pi}{13}=0}

Solution:

We know that,

\pink{\underline{\boxed{\bf{cosC+cosD=2cos\dfrac{C+D}{2}cos\dfrac{C-D}{2}}}}}

\purple{\underline{\boxed{\bf{cos(-x)=cosx}}}}

\orange{\underline{\boxed{\bf{cos\dfrac{\pi}{2}=0}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━

Here,

\rm{L.H.S.=2cos\dfrac{\pi}{13}cos\dfrac{9\pi}{13}+cos\dfrac{3\pi}{13}+cos\dfrac{5\pi}{13}}

\sf{L.H.S.=2cos\dfrac{\pi}{13}cos\dfrac{9\pi}{13}+2cos\dfrac{\frac{3\pi+5\pi}{13}}{2}cos\dfrac{\frac{3\pi-5\pi}{13}}{2}}

\sf{L.H.S.=2cos\dfrac{\pi}{13}cos\dfrac{9\pi}{13}+2cos\dfrac{8\pi}{2\times13}cos\dfrac{-2\pi}{2\times13}}

\rm{L.H.S.=2cos\dfrac{\pi}{13}cos\dfrac{9\pi}{13}+2cos\dfrac{4\pi}{13}cos\dfrac{-\pi}{13}}

\rm{L.H.S.=2cos\dfrac{\pi}{13}cos\dfrac{9\pi}{13}+2cos\dfrac{4\pi}{13}cos\dfrac{\pi}{13}}

\rm{L.H.S.=2cos\dfrac{\pi}{13}\bigg(cos\dfrac{9\pi}{13}+2cos\dfrac{4\pi}{13}\bigg)}

\rm{L.H.S.=2cos\dfrac{\pi}{13}\bigg(2cos\dfrac{\frac{9\pi+4\pi}{13}}{2}cos\dfrac{\frac{9\pi-4\pi}{13}}{2}\bigg)}

\rm{L.H.S.=2cos\dfrac{\pi}{13}\bigg(2cos\dfrac{13\pi}{2\times13}cos\dfrac{5\pi}{2\times13}\bigg)}

\rm{L.H.S.=2cos\dfrac{\pi}{13}\bigg(2cos\dfrac{\pi}{2}cos\dfrac{5\pi}{26}\bigg)}

\rm{L.H.S.=2cos\dfrac{\pi}{13}\bigg(2(0)cos\dfrac{5\pi}{26}\bigg)}

\rm{L.H.S.=2cos\dfrac{\pi}{13}\bigg(0\bigg)}

\rm{L.H.S.=0}

\rm\green{L.H.S.=R.H.S.}

\bigstar\underline{\underline{\rm\red{Hence\ Proved}}}

Similar questions