Math, asked by idonotknowthis, 3 days ago

prove this trigonometry ratio​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

2 \sin \bigg( \frac{6\pi}{11} \bigg) \cos \bigg( \frac{\pi}{11}  \bigg)   +  \sin \bigg( \frac{16\pi}{11}  \bigg)  +  \sin \bigg( \frac{18\pi}{11}  \bigg)  \\

 = 2 \sin \bigg( \frac{6\pi}{11} \bigg) \cos \bigg( \frac{\pi}{11}  \bigg)   + 2 \sin \bigg \{ \frac{1}{2}  \bigg( \frac{16\pi}{11}   +  \frac{18\pi}{11}  \bigg)  \bigg \} \cos\bigg \{ \frac{1}{2}  \bigg( \frac{16\pi}{11}    -   \frac{18\pi}{11}  \bigg)  \bigg \}\\

 = 2 \sin \bigg( \frac{6\pi}{11} \bigg) \cos \bigg( \frac{\pi}{11}  \bigg)   + 2 \sin \bigg \{ \frac{1}{2}  \bigg( \frac{34\pi}{11}  \bigg)  \bigg \} \cos\bigg \{ \frac{1}{2}  \bigg(     -   \frac{2\pi}{11}  \bigg)  \bigg \}\\

 = 2 \sin \bigg( \frac{6\pi}{11} \bigg) \cos \bigg( \frac{\pi}{11}  \bigg)   + 2 \sin  \bigg( \frac{17\pi}{11}  \bigg)   \cos \bigg(     -   \frac{\pi}{11}  \bigg) \\

 = 2 \sin \bigg( \frac{6\pi}{11} \bigg) \cos \bigg( \frac{\pi}{11}  \bigg)   + 2 \sin  \bigg( \frac{17\pi}{11}  \bigg)   \cos \bigg(     \frac{\pi}{11}  \bigg) \\

 = 2 \cos \bigg( \frac{\pi}{11}  \bigg)  \bigg \{  \sin \bigg( \frac{6\pi}{11} \bigg)   +  \sin  \bigg( \frac{17\pi}{11}  \bigg)  \bigg \} \\

 = 2 \cos \bigg( \frac{\pi}{11}  \bigg)  \bigg [ 2\sin \bigg \{ \ \frac{1}{2}  \bigg( \frac{6\pi}{11}    +   \frac{17\pi}{11}  \bigg) \bigg \} \cos \bigg \{ \ \frac{1}{2}  \bigg( \frac{6\pi}{11}     -    \frac{17\pi}{11}  \bigg) \bigg \}  \bigg] \\

 = 2 \cos \bigg( \frac{\pi}{11}  \bigg)  \bigg [ 2\sin \bigg \{ \ \frac{1}{2}  \bigg( \frac{23\pi}{11}   \bigg) \bigg \} \cos \bigg \{ \ \frac{1}{2}  \bigg(    -    \frac{11\pi}{11}  \bigg) \bigg \}  \bigg] \\

 = 4 \cos \bigg( \frac{\pi}{11}  \bigg)  \sin   \bigg( \frac{23\pi}{22}   \bigg)  \cos \bigg \{ \ \frac{1}{2}  \bigg(    - \pi  \bigg) \bigg \}  \\

 = 4 \cos \bigg( \frac{\pi}{11}  \bigg)  \sin   \bigg( \frac{23\pi}{22}   \bigg)  \cos \bigg ( - \frac{ \pi}{2}   \bigg)  \\

 = 4 \cos \bigg( \frac{\pi}{11}  \bigg)  \sin   \bigg( \frac{23\pi}{22}   \bigg)  \cos \bigg (\frac{ \pi}{2}   \bigg)  \\

 = 4 \cos \bigg( \frac{\pi}{11}  \bigg)  \sin   \bigg( \frac{23\pi}{22}   \bigg)  \times 0 \\

 = 0

Similar questions