Math, asked by deepeshthakur717, 1 year ago

prove trigonometry question

Attachments:

tarun0001: divide LHS by cosx in numerator and denominator then rationalise u get your ans
Anonymous: Rationalise....
tarun0001: yaa

Answers

Answered by tarun0001
2
Divide lhs by cosx

Secx + tanx) /( secx - tanx)
( secx +tanx) ^2/ sec^2x - tan^2x
( secx +tanx) ^2 rhs ....... Proved
Answered by abhi569
5
Theta is written as A ,




LHS = >

<br />\dfrac{ 1 + sinA }{ 1 - sinA }  \\ \\ \\ \bold{By\:Rationalization ,} \\ \\ \\ \\ \dfrac{1 + sinA}{1 - sinA} \times \dfrac{1 + sinA}{1+sinA}



= &gt; \dfrac{ ( 1 + sinA)^{2}}{1^{2}- sin^{2}A } \\ \\ \\ = &gt; \frac{ 1^{2} + sin^{2}A + 2sinA }{1 - sin^{2}A} \\ \\ \\ = &gt; \dfrac{ 1 + sin^{2}A + 2sinA}{ cos^2A}





RHS = >



 =  &gt; ( secA + tanA)^{2} \\ \\ \\  =  &gt;  sec^{2}A + tan^{2}A + 2secA.tanA \\ \\ \\   =  &gt;sec^{2}A + tan^{2}A + 2secA.tanA \\ \\ \\   =  &gt; \frac{1}{cos {}^{2}A } +  \frac{sin {}^{2}A }{ {cos}^{2}A  }  <br /> + (2 \times  \frac{1}{cosA}  \times  \frac{sin A}{ {cos}A  } )




 =  &gt;  \frac{1 + sin {}^{2}A  }{cos {}^{2} A}  + 2( \frac{sinA}{ {cos}^{2}A } ) \\  \\  \\  =  &gt;  \frac{1 +  {sin}^{2} A + 2sinA}{ {cos}^{2} A }








LHS = RHS


Hence, proved.

Similar questions