Math, asked by twinklesugathan8225, 10 months ago

Prove under root 1 + cos theta upon 1 minus cos theta is equals to 1 + cos theta upon sin theta

Answers

Answered by mantu9000
2

We have to prove that \sqrt{\dfrac{1+\cos \theta}{1-\cos \theta} } =\dfrac{1+\cos \theta}{\sin \theta} .

Solution:

L.H.S. =\sqrt{\dfrac{1+\cos \theta}{1-\cos \theta} }

Rationalising numerator and denominator part, we get

= \sqrt{\dfrac{1+\cos \theta}{1-\cos \theta}\times \dfrac{1+\cos \theta}{1+\cos \theta}  }

= \sqrt{\dfrac{(1+\cos \theta)^2}{1^2-\cos^2 \theta} }

= \sqrt{\dfrac{(1+\cos \theta)^2}{1-\cos^2 \theta} }

Using the trigonometric identity:

\sin^2 \theta=1-\cos^2 \theta

= \sqrt{\dfrac{(1+\cos \theta)^2}{\sin^2 \theta} }

= \dfrac{1+\cos \theta}{\sin \theta}

= R.H.S., proved.

Thus, we have to proved that \sqrt{\dfrac{1+\cos \theta}{1-\cos \theta} } =\dfrac{1+\cos \theta}{\sin \theta} .

Answered by nirman95
3

To prove:

 \bf\sqrt{ \dfrac{1 +  \cos( \theta) }{1 -  \cos( \theta) } } =  \dfrac{1 +  \cos( \theta) }{ \sin( \theta) }

Proof:

LHS:

 \therefore \:  \sf \:   \sqrt{\dfrac{1 +  \cos( \theta) }{1 -  \cos( \theta) }}

Multiplying numerator and denominator with 1 +\cos(\theta):

 =  \:  \sf \:   \sqrt{\dfrac{1 +  \cos( \theta) }{1 -  \cos( \theta) } \times  \dfrac{1 +  \cos( \theta) }{1  +  \cos( \theta) } }

 =  \:  \sf \:   \sqrt{\dfrac{{ \bigg \{1 +  \cos( \theta) \bigg \}}^{2}  }{1 -  {\cos}^{2} ( \theta) }}

 =  \:  \sf \:   \sqrt{\dfrac{{ \bigg \{1 +  \cos( \theta) \bigg \}}^{2}  }{ {\sin}^{2} ( \theta) }}

 =  \:  \sf \:   \sqrt{ {\bigg \{ \dfrac{ 1 +  \cos( \theta)  }{ \sin( \theta) }  \bigg \}}^{2} }

 \sf  = \:   \dfrac{1 +  \cos( \theta) }{ \sin( \theta) }

 \sf =  \: RHS

Hence proved.

Similar questions