Math, asked by reutsid, 1 year ago

Prove: under root (sec theta-1/sec theta+1) + under root (sec theta+1/sec theta-1) = 2 Cosec theta?pleaseee explain with clear steps!!!asap!!!!

Answers

Answered by GB2010
68
Hiiii........

It helps uuuuu ...
Attachments:

reutsid: heyy!!
reutsid: thanks alot!!!
reutsid: btw..can u please clarify the first step..please..the first one..step#??
Answered by mysticd
14

Answer:

\sqrt{\frac{sec\theta-1}{sec\theta+1}}+\sqrt{\frac{sec\theta-1}{sec\theta+1}}= 2cosec\theta

Step-by-step explanation:

LHS=\sqrt{\frac{sec\theta-1}{sec\theta+1}}+\sqrt{\frac{sec\theta-1}{sec\theta+1}}

=\frac{\left(\sqrt{sec\theta-1}\right)^{2}+\left(\sqrt{sec\theta+1}\right)^{2}}{\sqrt{(sec\theta+1)(sec\theta-1)}}

=\frac{sec\theta-1+sec\theta+1}{\sqrt{sec^{2}\theta-1^{2}}}

=\frac{2sec\theta}{\sqrt{tan^{2}\theta}}

=\frac{2sec\theta}{tan\theta}

=\frac{\frac{2}{cos\theta}}{\frac{sin\theta}{cos\theta}}

=\frac{2}{sin\theta}\\=2cosec\theta\\=RHS

Therefore,

\sqrt{\frac{sec\theta-1}{sec\theta+1}}+\sqrt{\frac{sec\theta-1}{sec\theta+1}}= 2cosec\theta

•••♪

Similar questions