Math, asked by Premkumarobara2, 4 months ago

Prove: under root (sec theta-1/sec theta+1) + under root (sec theta+1/sec theta-1) = 2 Cosec theta?​

Answers

Answered by akshatbanzal0800
0

Answer:

Consider LHS

  \sqrt{ \frac{ \sec(θ)  - 1 }{ \sec(θ) + 1 }  }  + \sqrt{ \frac{ \sec(θ)   +  1 }{ \sec(θ)  -  1 }  }  \\  \\  =   \frac{\sec(θ)  - 1 +  \sec(θ) + 1}{ \sqrt{(\sec(θ) + 1)(\sec(θ)  - 1)} }

 =  \frac{2 \sec(θ) }{    \tan(θ)   }  \\  \\  =  \frac{2 \frac{1}{ \cos(θ) } }{ \frac{ \sin(θ) }{\cos(θ)} }

 =  \frac{2}{ \sin(θ) }  \\  \\  = 2 \csc(θ)

Hence Proved

Hope it helps

Similar questions