Math, asked by Anonymous, 4 months ago

Prove using identities:-

 \dfrac{1 +  {tan}^{2} \theta }{1 +  {cot}^{2} \theta}  ={ ( \dfrac{1 +  tan \theta}{1 + cot \theta} ) }^{2} =   {tan}^{2} \theta
 \tt \red{!!!!  \:  \: No  \: spam \:  \: !!!! }   \\   \sf{\underline{⋆ \: Proper \:  explanation  \: ⋆}}

Answers

Answered by EthicalElite
14

To Prove :

 \sf \dfrac{1 + {tan}^{2} \theta }{1 + {cot}^{2} \theta} ={ \Bigg( \dfrac{1 + tan \theta}{1 + cot \theta} \Bigg) }^{2} = {tan}^{2} \theta

⠀ ⠀⠀ ⠀ ⠀⠀ ⠀

Proof :

⠀⠀ ⠀ ⠀⠀ ⠀

Type 1 :

 \sf \dfrac{1 + {tan}^{2} \theta }{1 + {cot}^{2} \theta}

⠀⠀ ⠀ ⠀⠀ ⠀

We know that :

 \large \underline{\boxed{\bf{1 + tan^{2} = sec ^{2}}}}

 \large \underline{\boxed{\bf{1 + cot^{2} = cosec ^{2}}}}

 \sf : \implies \dfrac{sec^{2} \theta}{cosec^{2} \theta}

⠀ ⠀⠀ ⠀

Now, we know that :

 \large \underline{\boxed{\bf{sec = \dfrac{1}{cos}}}}

 \large \underline{\boxed{\bf{cosec = \dfrac{1}{sin}}}}

 \sf : \implies \dfrac{\dfrac{1}{cos^{2} \theta}}{ \dfrac{1}{sin^{2} \theta}}

 \sf : \implies \dfrac{1}{cos^{2} \theta}\times \dfrac{sin^{2} \theta}{1}

 \sf : \implies \dfrac{sin^{2} \theta}{cos^{2} \theta}

⠀ ⠀⠀ ⠀

Now, we know that :

 \large \underline{\boxed{\bf{\dfrac{sin}{cos} = tan}}}

 \sf : \implies tan ^{2} \theta

⠀⠀ ⠀ ⠀⠀ ⠀

Type 2 :

 \sf { \Bigg( \dfrac{1 + tan \theta}{1 + cot \theta} \Bigg) }^{2}

⠀ ⠀⠀ ⠀

We know that :

 \large \underline{\boxed{\bf{tan = \dfrac{sin}{cos}}}}

 \large \underline{\boxed{\bf{cot = \dfrac{cos}{sin}}}}

 \sf : \implies \Bigg( \dfrac{1 + \dfrac{sin \theta}{cos\theta}}{1 + \dfrac{cos\theta}{sin \theta}}\Bigg)^{2}

 \sf : \implies \Bigg( \dfrac{\dfrac{cos \theta + sin \theta}{cos\theta}}{ \dfrac{sin \theta + cos\theta}{sin \theta}}\Bigg)^{2}

 \sf : \implies \Bigg( \dfrac{cos \theta + sin \theta}{cos\theta} \times  \dfrac{sin \theta}{sin \theta + cos\theta}\Bigg)^{2}

 \sf : \implies \Bigg( \dfrac{\cancel{cos \theta + sin \theta}}{cos\theta} \times  \dfrac{sin \theta}{\cancel{cos \theta + sin\theta}}\Bigg)^{2}

 \sf : \implies \Bigg( \dfrac{sin \theta}{cos\theta}\Bigg)^{2}

⠀ ⠀⠀ ⠀

Now, we know that :

 \large \underline{\boxed{\bf{\dfrac{sin}{cos} = tan}}}

 \sf : \implies (tan \theta)^{2}

 \sf : \implies tan^{2} \theta

⠀⠀ ⠀ ⠀⠀ ⠀

Type 3 :

 \sf {tan}^{2} \theta

⠀⠀ ⠀ ⠀⠀ ⠀

As, Type 1 = Type 2 = Type 3 = tan²θ

Hence, proved.

Similar questions