Math, asked by Anonymous, 17 days ago

Prove using integral test that the Riemann zeta function converges when p > 1 and diverges whenever 0 < p ≤ 1.

Reimann zeta function:-
 \boxed{  \zeta(p) =  \sum \limits_{n = 1}^ \infty  \dfrac{1}{ {n}^{ p} } =  \frac{1}{ {1}^{p} }   +  \frac{1}{ {2}^{p} } +  \frac{1}{ {3}^{p} }  + ... }

Answers

Answered by pulakmath007
7

SOLUTION

TO DETERMINE

The below series converges when p > 1 and diverges whenever 0 < p ≤ 1

\displaystyle \sf \sum\limits_{n=1}^{ \infty } \:  \frac{1}{ {n}^{p} }

PROOF

1st Method :

Using Integral Test

Integral test state that a positive term series f(1) + f(2) +.. .. + f(n) + .. .. where f(n) decreases as n increases , converges or diverges according as the integral

\displaystyle  \sf \: \int\limits_{1}^{\infty}f(x)\, dx  \:  \: is  \: finite \:  or  \: infinite

By the above test the given seris will converge or diverge according as

\displaystyle  \sf \: \int\limits_{1}^{\infty} \:  \frac{1}{ {x}^{p} } \, dx  \:  \: is  \: finite \:  or  \: infinite

Case : I

 \sf \: If  \: p  \ne \: 1

\displaystyle  \sf \: \int\limits_{1}^{\infty} \:  \frac{1}{ {x}^{p} } \, dx  \:

\displaystyle  \sf  = \lim_{m \to  \infty } \:  \int\limits_{1}^{m} \:  \frac{1}{ {x}^{p} } \, dx  \:

\displaystyle  \sf  = \lim_{m \to  \infty } \:   \bigg(  \frac{ {m}^{1 - p}  - 1}{1 - p} \bigg)

 = \begin{cases} &amp; \sf{ \:  \:  \:  \:  \dfrac{1}{p - 1}  \:   \:  \: \: when \: p &gt;  1} \\  \\ &amp; \sf{  \to \:  \infty  \:  \:  \:  \:  \: when \: p  &lt;   1}  \end{cases}\\ \\

Case : II

For p = 1

\displaystyle  \sf \: \int\limits_{1}^{\infty} \:  \frac{1}{ {x}^{p} } \, dx

\displaystyle   = \sf \: \int\limits_{1}^{\infty} \:  \frac{1}{ {x}^{} } \, dx

\displaystyle  \sf \:   =  \log x  \bigg| _{1}^{\infty}

\displaystyle  \sf    \to \: \:  \infty

Hence the proof follows

2nd Method :

Case : I

Let us check for p > 1

\displaystyle \sf Let  \: a_n =  \:  \frac{1}{ {n}^{p} }

 \sf{Let  \:  \sum b_n \:  is  \: obtained  \: by  \: grouping \:  the \:  terms \:  of  \:  \sum a_n}

\displaystyle \sf \sum a_n =  1 +  \bigg( \frac{1}{ {2}^{p}  } +  \frac{1}{ {3}^{p} } \bigg)  +   \bigg( \frac{1}{ {4}^{p}  } +  \frac{1}{ {5}^{p} } + \frac{1}{ {6}^{p}  } +  \frac{1}{ {7}^{p} } \bigg) + .. \: ..

Let us take

\displaystyle \sf b_1 =  1

\displaystyle \sf b_2=    \bigg( \frac{1}{ {2}^{p}  } +  \frac{1}{ {3}^{p} } \bigg)

\displaystyle \sf b_3 =  \bigg( \frac{1}{ {4}^{p}  } +  \frac{1}{ {5}^{p} } + \frac{1}{ {6}^{p}  } +  \frac{1}{ {7}^{p} } \bigg)

.

.

.

So on

We now observe that

\displaystyle \sf b_2  &lt;  \bigg( \frac{1}{ {2}^{p}  } +  \frac{1}{ {2}^{p} }\bigg)  =  \frac{2}{ {2}^{p} }  =  \frac{1}{ {2}^{p - 1} }

\displaystyle \sf b_3  &lt;  \bigg( \frac{1}{ {4}^{p}  } +  \frac{1}{ {4}^{p} } +\frac{1}{ {4}^{p}  } +  \frac{1}{ {4}^{p} } \bigg)  =  \frac{4}{ {4}^{p} }  =  \frac{1}{{( {2}^{p - 1}) }^{2}  }

.

.

So on

In general

\displaystyle \sf b_n  &lt; { \bigg( \frac{1}{{2}^{p - 1}  }  \bigg)}^{n - 1}  \:  \:  \:  \: for \: all \: n  \geqslant 2

\displaystyle \sf Now  \: when \:  \: p &gt; 1 \: we \: have \:   \frac{1}{ {2}^{p - 1} } &lt; 1

 \displaystyle \sf  \because \:  \sum \:  { \bigg( \frac{1}{{2}^{p - 1}  }  \bigg)}^{n - 1}  \: is  \: convergent \:  geometric  \: series  \: as \: common \: ratio \:  &lt; 1

 \sf \therefore \:  \sum b_n \:  \: is \: convergent \: by \: comparision \: test

 \sf \therefore \:  \sum a_n \:  \: is \: convergent \:

\displaystyle \sf  \therefore \: \sum\limits_{n=1}^{ \infty } \:  \frac{1}{ {n}^{p} }  \:  \: is \: convergent

Case : II

Let us check for p = 1

Putting p = 1 we get the Harmonic series which is divergent by Cauchy's Principle

Case : III

Let us check for p < 1

Then we have

\displaystyle \sf  \frac{1}{ {2}^{p}  }  &gt;  \frac{1}{2}

\displaystyle \sf  \frac{1}{ {3}^{p}  }  &gt;  \frac{1}{3}

.

.

So on

\displaystyle \sf  \because \: \sum\limits_{n=1}^{ \infty } \:  \frac{1}{ {n}^{} }  \:  \: is \: divergent \:  \: Harmonic  \: series

 \sf \therefore \:  \sum a_n \:  \: is \: divergent \:

\displaystyle \sf  \therefore \: \sum\limits_{n=1}^{ \infty } \:  \frac{1}{ {n}^{p} }  \:  \: is \: convergent

Hence the proof follows

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

2. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882


amansharma264: Excellent
Similar questions