Prove using the principle of mathematical induction
Answers
Question
Prove using principle of mathematical induction
1*3 + 3*5 + 5*7 +.....+ (2n - 1)(2n + 1) =
Solution
First of all we will check whether the expression is true for P(1), that is, n = 1
1*3 =
3 =
3 = 3
LHS = RHS
Hence, the given expression is true for P(1)
Now we will assume that given expression is true for P(k) for some positive integer k. That is,
1*3 + 3*5 ....... + (2k - 1)(2k + 1) =
Now we will check if it is true for integer (k + 1) too.
1*3 + 3*5 .......... + (2k - 1)(2k + 1) + (2(k + 1) - 1)(2(k + 1) + 1)
⇒ 1*3 + 3*5 .......... + (2k - 1)(2k + 1) + (2k + 2 - 1)(2k + 2 + 1)
⇒ + (2k + 1)(2k + 3)
(Since 1*3 + 3*5 ....... + (2k - 1)(2k + 1) = )
+ (4k^2 + 8k + 3)
⇒
⇒
Now, the given expression 4k³ + 18k² + 23k + 9 becomes 0 for k = -1. Hence, (k + 1) is a factor of 4k³ + 18k² + 23k + 9
Take out (k + 1) as factor
⇒
⇒
⇒
⇒
⇒
Hence,
1*3 + 3*5 ..........+(2k - 1)(2k + 1) + (2(k + 1) - 1)(2(k + 1) + 1) =
Hence, P(k + 1) is true whenever P(k) is true. Hence, by the principle of mathematical induction,
1*3 + 3*5 + 5*7 +.....+ (2n - 1)(2n + 1) =
is true for all natural values of n
let P(n): 1.3+3.5+5.7+.....+(2n-1)(2n+1) = n(4n²+6n-1)/3
Now,
P(1) = 1.3= 3= 1(4.1²+6.1-1)/3 = 4+6-2/3
= 9/3 = 3
which is true.
Let P(k) be true for some positive integer k:
1.3+3.5+5.7+......+(2k-1)(2k+1)= k(4k²+6k-1)/3 ......(1)
Now, we prove P(k+1)
→ (1.3+3.5+5.7+.....+(2k-1)(2k+1)+{2(k+1)-1}{2(k+1)+1}
→ k(4k²+6k-1)/3+(2k+1-1)(2k+2+1)
→ k(4k²+6k-1)/3+(4k²+8k+3)
→ 4k²+6k²-k+12k²+24k+9/3
→ 4k³+14k²+9k+4k²+14k+9/3
→ k(4k²+14k+8)+1(4k²-14+9)/3
→ (k+1)(4k²+14k+9)/3
→ (k+1){4(k+1)№+6(k+1)-1}/3
•°• Thus P(k+1) is true.
Hence by PMI , statement P(n) is true for all natural no. n.