Physics, asked by nirmalyabhujabal, 1 month ago

prove
v²=U²+2as by normal method​

Answers

Answered by Anonymous
2

Answer:

[ V = u + at { equation 1 from } ; t = v - u /a

& Put the t value in equation 2 , i.e.,

S = ut + 1/2 at^2

S = u ( v - u ) /a + 1/2 a { ( v - u ) /a } ^2

S = v - u /a [ u + 1/2 a { v - u /a }

S = v - u / a . ( v + u / 2 ) [ by cancelling above step }

S = v^2 - u^2 /2a

2as = v^2 - u^2 / v^2 = u^2 + 2as

Hope !! It helps ..

Explanation:

Answered by Yuseong
6

Explanation:

Here, we are asked to derive the third equation of motion, that is v² = u² + 2as.

As we know that according to the first and second equation of motion,

  • \rm {v = u + at} \dots \bf{(1)}

  • \rm {s = ut+ \dfrac{1}{2}at^2} \dots \bf{(2)}

In the first equation of motion, we have :

\longmapsto \rm {v = u + at}

Or, we can write it as,

\longmapsto \rm {v -u = at }

\longmapsto \rm {\dfrac{v -u }{a} =t \quad \dots \bf{(1)} } \\

Now, substitute the value of t from equation (1) into the equation (2).

\longmapsto\rm {s = ut +\dfrac{1}{2}at^2}  \\

\longmapsto\rm {s = u\Bigg (\dfrac{v -u }{a} \Bigg ) +   \dfrac{1}{2}a{\Bigg (\dfrac{v -u }{a} \Bigg )}^2}\\

\longmapsto\rm {s = \dfrac{u(v -u) }{a} +   \dfrac{a}{2} \Bigg ( \dfrac{v^2 + u^2 -2vu}{a^2} \Bigg) }  \\

\longmapsto\rm {s = \dfrac{u(v -u) }{a} +  \dfrac{a(v^2 + u^2 -2vu)}{2(a^2)}  }  \\

\longmapsto\rm {s = \dfrac{uv - u^2 }{a} +  \dfrac{\cancel{a}(v^2 + u^2 -2vu)}{2\cancel{a^2}}  }  \\

\longmapsto\rm {s = \dfrac{uv - u^2 }{a} +  \dfrac{(v^2 + u^2 -2vu)}{2a}  }\\

\longmapsto\rm {s =  \dfrac{\cancel{2uv} - 2u^2 + v^2 + u^2 \cancel{-2vu}}{2a}  }\\

\longmapsto\rm {s =  \dfrac{-2u^2 + v^2 + u^2}{2a}  }\\

\longmapsto\rm {s =  \dfrac{v^2 - u^2}{2a}  } \\

\longmapsto\rm {2as =  v^2 - u^2} \\

\longmapsto\bf {2as + u^2 =  v^2 } \\

Hence, proved!

More Information :

Equations of motion :

\boxed{ \begin{array}{cc}    \pmb{\sf{ \quad \: v = u + at \quad}}  \\  \\  \pmb{\sf{ \quad \:  s= ut +  \cfrac{1}{2}a{t}^{2}  \quad \: } } \\ \\  \pmb{\sf{ \quad \:  {v}^{2} -  {u}^{2}  = 2as \quad \:}}\end{array}}

  • v denotes final velocity
  • u denotes initial velocity
  • a denotes acceleration
  • t denotes time
  • s denotes distance
Similar questions