prove with process: (1-cos²theta)(1+tan²theta)=tan²theta
Answers
Answered by
10
EXPLANATION.
⇒ (1 - cos²θ)(1 + tan²θ) = tan²θ.
As we know that,
Formula of :
⇒ sin²θ + cos²θ = 1.
⇒ 1 - cos²θ = sin²θ.
⇒ 1 + tan²θ = sec²θ.
Using this formula in the equation, we get.
⇒ (sin²θ)(sec²θ).
⇒ (sin²θ) x (1/cos²θ).
⇒ tan²θ.
Hence proved.
MORE INFORMATION.
Trigonometric ratios of multiple angles.
(1) = sin2θ = 2sinθ.cosθ = 2tanθ/1 + tan²θ.
(2) = cos2θ = cos²θ - sin²θ = 2cos²θ - 1 = 1 - 2sin²θ = 1 - tan²θ/1 + tan²θ.
(3) = tan2θ = 2tanθ/1 - tan²θ.
(4) = sin3θ = 3sinθ - 4sin³θ.
(5) = cos3θ = 4cos³θ - 3cosθ.
(6) = tan3θ = 3tanθ - tan³θ/1 - 3tan²θ.
Answered by
71
(1 - cos²θ) (1 + tan²θ) = tan²θ
L.H.S. = (1 - cos²θ) (1 + tan²θ)
= sin²θ × sec²θ
= sin²θ × 1/cos²θ
= sin²θ/cos²θ
= tan²θ = R.H.S.
Similar questions