Math, asked by shreyas437, 10 months ago

Prove z1/z2 whole bar is equal to z1 bar/z2 bar.
Bar here means conjugate

Answers

Answered by pulakmath007
31

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

 \sf{ \: If \:  z = x+iy \:  \:  then  \:  \:  \overline{z} = x - iy\: }

TO PROVE

 \displaystyle \sf{  \overline{\bigg(\frac{z_1}{z_2} \bigg) }\:  =  \frac{ \overline{z_1}}{\overline{z_2}} }

PROOF

 \sf{ Let \:  \:  z_1 = a+ib  \:  \: and \:  \:  z_2= c+id \: }

 \sf{   \therefore \:  \:  \:  z_1 = a - ib  \:  \: and \:  \:  z_2= c - id \: }

Now

 \displaystyle \sf{  \frac{z_1}{z_2}  \:  }

  = \displaystyle \sf{  \frac{a + ib}{c + id}  \:  }

  = \displaystyle \sf{  \frac{(a + ib)(c - id)}{(c + id)( c- id)}  \:  }

  = \displaystyle \sf{  \frac{ac - iad  + ibc-  {i}^{2}bd }{ {c}^{2}  -  {i}^{2} {d}^{2}  }  \:  }

  = \displaystyle \sf{  \frac{(ac + bd) - i(ad  - bc)}{ {c}^{2}  +  {d}^{2}  }  \:  }

LHS

  = \displaystyle \sf{  \overline{\bigg(\frac{z_1}{z_2} \bigg) }\:   }

  = \displaystyle \sf{  \frac{(ac + bd)  +  i(ad  - bc)}{ {c}^{2}  +  {d}^{2}  }  \:  }

  = \displaystyle \sf{  \frac{ac  +  iad   - ibc-  {i}^{2}bd }{ {c}^{2}   -  {i}^{2}   {d}^{2}  }  \:  }

  = \displaystyle \sf{  \frac{(a  -  ib)(c  +  id)}{(c + id)( c- id)}  \:  }

  = \displaystyle \sf{  \frac{(a  -  ib)}{( c- id)}  \:  }

 \displaystyle \sf{  =  \frac{ \overline{z_1}}{\overline{z_2}} }

= RHS

Hence proved

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

show that sinix=isinhx

https://brainly.in/question/11810908

Answered by adnanayub345a
2

Answer:

adnan ayub bs Mathematics book seventh edition by James ward and sterwat

Attachments:
Similar questions