Math, asked by khzsp1jwkpicc1791, 3 months ago

Proved that.
√(1 + sinA ÷ 1 - sinA) = secA + tanA.

No copyright answer.​

Answers

Answered by shailajanaik66
9

=1+sinA/cosA

= 1/cosA + sinA /cosA

=secA+tanA

=RHS

Step-by-step explanation:

hope this helps you..

Attachments:
Answered by ItzMarvels
26

__________________

♧Question♧

\Huge{ \dashrightarrow  {\sf\sqrt{ \frac{1 + sinA}{1  - sinA} } }}

♧Answer♧

\large{ \dashrightarrow  {\sf\sqrt{ \frac{1 + sinA}{1  - sinA} } }} \\  \\  \large{ \sf{By \:  conjugate  \: multiplication \:  method }} \\  \\ \large{ \dashrightarrow  {\sf\sqrt{ \frac{1 + sinA}{1  - sinA} \times{\sf{ \frac{1 + sinA}{1  +  sinA}}}} }} \\  \\ \large{ \dashrightarrow  {\sf\sqrt{ \frac{({1 + sinA})^{2} }{1  - sin^{2} A} } }} \\  \\ \large{ \dashrightarrow  {\sf\sqrt{ \frac{(1 + sinA)^{2} }{cos ^{2} A} } }} \\  \\ \large{ \dashrightarrow  {\sf\sqrt{ (\frac{1 + sinA}{cosA} })^{2} }} \\  \\ \large{ \dashrightarrow  {\sf{\frac{1 + sinA}{cosA} } }} \\  \\ \large{ \dashrightarrow  {\sf{\frac{1}{cosA} +  \frac{sinA}{cosA} } }} \\  \\  \sf{we \: know \: that \:  \frac{1}{cosA} = secA \:  \: and \: \frac{sinA}{cosA}  = tanA} \\  \\  \dashrightarrow{  {\boxed{ \sf \red{secA + tanA}}}}

So proved that,

{\large{ \dashrightarrow  {\sf\sqrt{ \frac{1 + sinA}{1  - sinA} } }} = \sf{secA + tanA}}

___________________

Similar questions