Math, asked by Gautamkumr, 1 year ago

Proved that: cos² alpha - cos² bita/cos²alpha × cos² bita= tan²bita - tan²alpha​

Answers

Answered by rakhithakur
3

 \frac{ { \cos }^{2}  \alpha  -   { \cos}^{2}  \beta  }{  { \cos }^{2}  \alpha   { \cos }^{2} \beta } =  \frac{  { \cos}^{2}  \alpha  }{ { \cos }^{2}  \alpha   { \cos }^{2} \beta }   -   \frac{ { \cos}^{2} \beta  }{{ \cos }^{2}  \alpha   { \cos }^{2} \beta }
 \frac{1}{ { \cos }^{2}  \beta }  -  \frac{1}{  { \cos}^{2}  \alpha }
as you know that
   { \sin}^{2}theta  +  { \cos }^{2} theta = 1
 \frac{{sin}^{2} \beta + {cos}^{2}  \beta}{ {cos}^{2}  \beta }  -     \frac{ {\sin }^{2}  \alpha  +  { \cos }^{2} \alpha  }{  {cos}^{2} \alpha   }
 \frac{  {sin}^{2}  \beta }{ {{cos}^{2} }{ \beta }  }  + 1 \:  - 1 -  \frac{ {sin}^{2}  \alpha }{  {cos}^{2}  \alpha  }
 {tan}^{2}  \alpha  - {tan}^{2}  \beta
hope it helps you thanks for asking these type of questions
Similar questions