Proved that g(a2)=g(a-2)
Answers
Answered by
0
Answer:
A
2
=a+2d=a+
3
2(b−a)
=
3
a+2b
So, 2A
1
−A
2
=2(
3
2a+b
)−(
3
a+2b
)=a
and 2A
2
−A
1
=2(
3
a+2b
)−(
3
2a+b
)=b
Therefore,
(2A
1
−A
2
)(2A
2
−A
1
)=ab
(2A
1
−A
2
)(2A
2
−A
1
)=G
2
A
2
=a+2d=a+
3
2(b−a)
=
3
a+2b
So, 2A
1
−A
2
=2(
3
2a+b
)−(
3
a+2b
)=a
and 2A
2
−A
1
=2(
3
a+2b
)−(
3
2a+b
)=b
Therefore,
(2A
1
−A
2
)(2A
2
−A
1
)=ab
(2A
1
−A
2
)(2A
2
−A
1
)=G
2
Step-by-step explanation:
Similar questions