Math, asked by Narinder1577, 10 months ago

Proved that Sec A (1 - sin A) (Sec A + tan A) = 1​

Answers

Answered by allekeerthi13
1

i think this is the answer.............I hope this helps u

Attachments:
Answered by Cosmique
4

 \underline{ \underline{\large{ \purple{ \bf{to \: prove}}}}}

\sf{sec \: A \:  (1 - sin \: A)(sec \: A \:  + tan \: A) = 1}

\underline{ \underline{ \large{ \purple{ \bf{trigonometric \: ratios \: and \: identities \: used}}}}}

\bullet \sf{sec \theta =  \frac{1}{cos \theta} }

\bullet \sf{tan \theta =  \frac{sin \theta}{ cos \theta} }

\bullet \sf{1 -  {sin}^{2} \theta =  {cos}^{2} \theta  }

Algebraic identity used

\bullet \sf{(a  + b)(a - b) =  {a}^{2}  -  {b}^{2} }

\underline{ \underline{ \large{ \purple{ \bf{proof}}}}}

Taking LHS

 \implies \sf{Lhs =sec \: A\: (1 - sin \: A)(sec \: A \:  + tan \: A) }

\implies \sf{ =  \frac{1}{cos \: A}(1 - sin \: A)( \frac{1}{cos \: A} +  \frac{sin \: A}{cos \: A} )  }

\implies \sf{ =  \frac{1 - sin \: A}{cos \: A}  \times  \frac{1 + sin \: A}{cos \: A} }

using algebraic identity

\rm{(a + b)(a - b) =  {a}^{2}  -  {b}^{2} }

 \implies \sf{ \frac{ {1}^{2} -  {sin}^{2} A }{ {cos}^{2}A} }

\implies \sf{ \frac{1 -  {sin}^{2}A }{ {cos}^{2} A} }

using trigonometric identity

\rm{1 -  {sin}^{2} \theta =  {cos}^{2} \theta  }

\implies \sf{ \frac{ {cos}^{2}A }{ {cos}^{2}A } = 1 = Rhs }

Proved.

____________________

More trigonometric ratios and identites

\star\rm{cosec\theta=\frac{1}{sin\theta}}

\star\rm{cot\theta=\frac{1}{tan\theta}=\frac{cos\theta}{sin\theta}}

______________________________

\star\rm{1+tan^2\theta=sec^2\theta}

\star\rm{1+cot^2\theta=cosec^2\theta}

_____________________________

\star\rm{sin(90-\theta)=cos\theta}

\star\rm{cos(90-\theta)=sin\theta}

\star\rm{cosec(90-\theta)=sec\theta}

\star\rm{sec(90-\theta)=cosec\theta}

\star\rm{tan(90-\theta)=cot\theta}

\star\rm{cot(90-\theta)=tan\theta}

____________________

Similar questions