Math, asked by anshika0333, 10 months ago



Provethat(−sin)(sec −cos)= 1
tan +cot

Answers

Answered by Anonymous
4

Answer:

\huge\underline\bold\red{Answer!!}

<font color="blue">Let ∅ be 'A'

Given => (cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)

LHS

=> (cosecA - sinA)(secA - cosA)

=> (1/sinA - sinA)(1/cosA - cosA)

=> [(1 - sin²A)/sinA][(1 - cos²A)/cosA]

=> (cos²A/sinA)(sin²A/cosA)

=> sinAcosA/1

=>(sinAcosA)/(sin²A + cos²A)

=> 1/[(sin²A/sinAcosA) + (cos²A/sinAcosA)]

=> 1/(tanA + cotA)

=> RHS

LHS = RHS

Answered by Anonymous
21

Answer:

=> (cosecA - sinA)(secA - cosA)

=> (1/sinA - sinA)(1/cosA - cosA)

=> [(1 - sin²A)/sinA][(1 - cos²A)/cosA]

=> (cos²A/sinA)(sin²A/cosA)

=> sinAcosA/1

=>(sinAcosA)/(sin²A + cos²A)

=> 1/[(sin²A/sinAcosA) + (cos²A/sinAcosA)]

=> 1/(tanA + cotA)

=> RHS

LHS = RHS

Hope it will be helpful ✌️

Similar questions