Provethat(−sin)(sec −cos)= 1
tan +cot
Answers
Answered by
4
Answer:
Let ∅ be 'A'
Given => (cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)
LHS
=> (cosecA - sinA)(secA - cosA)
=> (1/sinA - sinA)(1/cosA - cosA)
=> [(1 - sin²A)/sinA][(1 - cos²A)/cosA]
=> (cos²A/sinA)(sin²A/cosA)
=> sinAcosA/1
=>(sinAcosA)/(sin²A + cos²A)
=> 1/[(sin²A/sinAcosA) + (cos²A/sinAcosA)]
=> 1/(tanA + cotA)
=> RHS
LHS = RHS
Answered by
21
Answer:
=> (cosecA - sinA)(secA - cosA)
=> (1/sinA - sinA)(1/cosA - cosA)
=> [(1 - sin²A)/sinA][(1 - cos²A)/cosA]
=> (cos²A/sinA)(sin²A/cosA)
=> sinAcosA/1
=>(sinAcosA)/(sin²A + cos²A)
=> 1/[(sin²A/sinAcosA) + (cos²A/sinAcosA)]
=> 1/(tanA + cotA)
=> RHS
LHS = RHS
Hope it will be helpful ✌️
Similar questions