Math, asked by itsmehere123, 1 day ago

provide answer with explanation

Attachments:

Answers

Answered by senboni123456
4

Answer:

(B)

Step-by-step explanation:

We have,

f(x)=2\sin(x)-x+1

\implies\,f^{\prime}(x)=2\cos(x)-1

For maxima or minima, we have f'(x)=0

So,

\implies\,2\cos(x)-1=0

\implies\,\cos(x)=\dfrac{1}{2}

Since  x\in\left(0,\dfrac{\pi}{2}\right), so,

\implies\,x=\dfrac{\pi}{3}

\tt{\bullet\,When\,\,x<\dfrac{\pi}{3}\,,\,\,\,}\tt{cos(x)>\dfrac{1}{2}}\\\\\tt{\implies2\,cos(x)-1>0}

\tt{\bullet\,When\,\,x>\dfrac{\pi}{3}\,,\,\,\,}\tt{cos(x)<\dfrac{1}{2}}\\\\\tt{\implies2\,cos(x)-1<0}

So, f'(x) changes its sign from positive to negative

\sf{f(x)\,\,has\,\,local\,\,maxima\,\,at\,\,x=\dfrac{\pi}{3}}

Similar questions