Math, asked by diamond80, 8 months ago

provvvvveeerrrr it
plssssssssssdddddssssssssss​

Attachments:

Answers

Answered by kaushik05
49

  \huge \: \mathfrak{solution}

To prove :

   \boxed{ \red{\bold{\sqrt{ \frac{1 + sin x}{1 - sin  x} }  = sec x \:  + tanx}}} \\

LHS:

 \rightarrow \:  \sqrt{ \frac{1 + sinx}{1 - sinx} }  \\  \\ \bold{ now \: rationalise \: the \: denominator} \\  \\  \rightarrow \:   \sqrt{ \frac{1 + sinx}{1 - sinx}  \times  \frac{1 + sinx}{1 + sinx} }  \\  \\  \rightarrow \:  \sqrt{ \frac{(1 +  {sin}x) ^{2} }{1 -  {sin}^{2}x } }  \\  \\ \bold{ as \: we \: know \: that }\ \\  \bold{  {sin}^{2} x +  {cos}^{2} x = 1} \\ \bold{    {cos}^{2} x = 1 -  {sin}^{2} x} \\  \\ \rightarrow \:  \sqrt{ \frac{(1 +  {sinx})^{2} }{ {cos}^{2} x} }  \\  \\  \rightarrow \:   \frac{1 + sinx}{cosx}  \\  \\  \rightarrow \:  \frac{1}{cosx}  +  \frac{sinx}{cosx}  \\  \\  \rightarrow\: secx  \: +  \: tanx

LHS=RHS

  \boxed{ \blue{ \huge\mathfrak{{proved}}}}

Answered by ItsShantanu
6

 \sf \underline{ \green{  \fbox{\huge{ \: \pink{  \orange{Solution : \: \: }}}}}}

LHS

  \hookrightarrow{ \mathtt{ \sqrt{ \frac{1 +  \sin(A) }{1 -  \sin(A) } }}}

Rationalising the denominator , we obtain

 \hookrightarrow \mathtt{ \sqrt{ \frac{1 +  \sin(A) }{1 -  \sin(A) }  \times  \frac{1 +  \sin(A) }{1  + \sin(A) }} }  \\  \\  \hookrightarrow \mathtt{ \sqrt{ \frac{ {(1  + \sin(A))}^{2} }{ {(1)}^{2}   -  {\sin}^{2} (A)  } }}  \\  \\ \hookrightarrow \mathtt{ \sqrt{ \frac{ {(1  + \sin(A))}^{2} }{  {\cos}^{2} (A)  } } \:  \:  \:  \bigg \{ \because \:  \: 1 -   {\sin}^{2} (A)  =   {\cos}^{2} (A)  \bigg\}} \\  \\   \hookrightarrow \mathtt{\frac{1 + \sin(A) }{\cos(A)} } \\  \\ \hookrightarrow \mathtt{  \frac{1}{\cos(A)}  +  \frac{\sin(A)}{\cos(A)}  }\\  \\ \hookrightarrow \mathtt{ \sec(A) + \tan(A)\:  \:  \:  \bigg \{   \because \:  \: \frac{1}{ \cos(A) }  =  \sec(A)  \:  \: and \:  \:  \frac{ \sin(A)}{ \cos(A)}  =  \tan(A)  \bigg \}}

 \large {\purple{ \star}}LHS = RHS

Hence proved

Similar questions