Hindi, asked by Anonymous, 7 months ago

Prve that

(tanθ+secθ-1)/(tanθ-secθ+1) = (1+sinθ)/(cosθ)​

Answers

Answered by ktanwar
1

Answer:

mark me as brainlist and follow me

Attachments:
Answered by Mysterioushine
4

To Prove :

  • \bf\dfrac{tan\theta+sec\theta-1}{tan\theta-sec\theta+1}=\dfrac{1+sin\theta}{cos\theta}

Solution :

In the given equation ;

  • \bf{LHS=\dfrac{tan\theta+sec\theta-1}{tan\theta-sec\theta+1}}

  • \bf{RHS=\dfrac{1+sin\theta}{cos\theta}}

Let us solve the LHS ,

 \\  \longrightarrow\bf \:  \dfrac{ tan \theta +  sec \theta - 1  }{tan \theta  - sec \theta + 1}  \\  \\

• We know that ;

  • \bf{sec^2\theta-tan^2\theta=1}

• By replacing the value we get ,

 \\  \longrightarrow \bf \:  \dfrac{ tan \theta +  sec \theta - (sec {}^{2} \theta - tan {}^{2} \theta)    }{tan \theta  - sec \theta + 1}  \\   \\

• using the identity a² - b² = (a+b)(a-b) we get ,

 \\   \longrightarrow\bf \:\dfrac{ tan \theta +  sec \theta - (sec  \theta  +  tan  \theta)( sec\theta  - tan\theta)  }{tan \theta  - sec \theta + 1} \\  \\

• By taking (tanθ +secθ) common in numertaor we get ,

 \\   \longrightarrow\bf  \dfrac{( tan \theta +  sec \theta)[ 1- (sec\theta - tan\theta)]}{tan \theta  - sec \theta + 1} \\  \\  \\  \\  \longrightarrow \bf\dfrac{( tan \theta +  sec \theta)[ ( - sec\theta  + tan\theta) + 1]}{tan \theta  - sec \theta + 1}  \\  \\  \\  \\    \longrightarrow\bf \: \dfrac{( tan \theta +  sec \theta)[ (tan\theta - sec\theta) + 1]}{tan \theta  - sec \theta + 1}  \\  \\

• Cancelling [(tanθ-secθ) +1] we get ;

 \\    \longrightarrow \: \bf \:( tan \theta +  sec\theta) \\  \\

We know that ,

  • \bf{tan\theta=\dfrac{sin\theta}{cos\theta}}

  • \bf{sec\theta=\dfrac{1}{cos\theta}}

• By replacing the values we get ;

 \\  \longrightarrow \bf \:  \frac{sin \theta}{cos \theta}  +  \frac{1}{cos \theta}  \\  \\

• Since denominators are equal ;

 \\  \longrightarrow \bf \frac{sin \theta + 1}{cos\theta}  \\  \\  \\  \\  \longrightarrow \bf \:  \frac{1 + sin \theta}{cos \theta}  \\  \\  \\  \\  \longrightarrow \large{ \sf{  RH  S   }}

⠀⠀⠀⠀ HENCE PROVED

Similar questions