Math, asked by randeepkapoor, 1 year ago

PS bisects angle P of triangle PQR and PR is greater than PQ . Prove that angle PSR is less than angle PSQ

Answers

Answered by dsdsds777
0

Answer:is given in picture


Step-by-step explanation:



randeepkapoor: where is the pic
dsdsds777: Sorry
dsdsds777: Here answer as angle pqr is opposite to pr
dsdsds777: As angle opposite to longer side is greater
dsdsds777: Hencefor
dsdsds777: Proved
randeepkapoor: thnks
Answered by Anonymous
0

Hello mate =_=

____________________________

Solution:

PR>PQ              (Given)

⇒∠PQR>∠PRQ             ....... (1)

(In any triangle, the angle opposite to the longer side is larger.)

We also have ∠PQR+∠QPS+∠PSQ=180°      (Angle sum property of triangle)     

⇒∠PQR=180°−∠QPS−∠PSQ             ......(2)

And, ∠PRQ+∠RPS+∠PSR=180°               (Angle sum property of triangle)          

⇒∠PRQ=180°−∠PSR−∠RPS            ....... (3)

 Putting (2) and (3) in (1), we get

180°−∠QPS−∠PSQ>180°−∠PSR−∠RPS             

We also have ∠QPS=∠RPS, using this in the above equation, we get

−∠PSQ>−∠PSR

⇒∠PSQ<∠PSR

Hence Proved

hope, this will help you.

Thank you______❤

_____________________________❤

Attachments:
Similar questions