PT cos^4 theta - cos^2 theta = sin^4 theta - sin^2 theta.
Answers
Answer:
Prove that cos⁴ θ - cos² θ = sin⁴ θ - sin² θ
GIVEN:
cos⁴ θ - cos² θ = sin⁴ θ - sin² θ
TO PROVE:
cos⁴ θ - cos² θ = sin⁴ - θ sin² θ
EXPLANATION:
METHOD 1:
By taking L.H.S as cos⁴ θ - cos² θ
Take cos² θ as common
cos² θ (cos² θ - 1)
\boxed{\large{\bold{1-\sin^2 \theta = \cos^2\theta}}}
1−sin
2
θ=cos
2
θ
\boxed{\large{\bold{-\sin^2 \theta = \cos^2\theta-1}}}
−sin
2
θ=cos
2
θ−1
cos² θ ( - sin² θ )
(1 - sin² θ )( - sin² θ )
- sin² θ + sin⁴ θ
sin⁴ θ - sin² θ
HENCE PROVED.
METHOD 2:
By taking R.H.S as sin⁴ θ - sin² θ
Take sin² θ as common
sin² θ (sin² θ - 1)
\boxed{\large{\bold{1-\cos^2 \theta = \sin^2\theta}}}
1−cos
2
θ=sin
2
θ
\boxed{\large{\bold{-\cos^2 \theta = \sin^2\theta}-1}}
−cos
2
θ=sin
2
θ−1
sin² θ ( - cos² θ )
(1 - cos² θ )( - cos² θ)
- cos² θ + cos⁴ θ
cos⁴ θ - cos² θ
HENCE PROVED
Answer:
prove that cos^4θ-cos^2θ=sin^4θ-sin^2θ _ (1)
we know that,
cos2θ=cos^θ-sin^θ
from equation number (1) w.k.t (cos^2θ+sin^2θ)=1
cos^4θ-sin^4θ = cos^2θ-sin^2θ
(cos^4θ-sin^4θ) = 1 x (cos^2θ-sin^2θ)
(cos^4θ-sin^4θ) = (cos^2θ-sin^2θ) x (cos^2θ+sin^2θ) (a+b) (a-b)=a²-b²
a - b a + b
there fore hence proved that,
cos^4θ-cos^2θ=sin^4θ-sin^2θ