Math, asked by ruchivekariya61, 4 months ago

PT is a tangents at T to a circle whose centre is O and radius 20cm. A line segment intersects with circle at point M. If MP=9cm,then find PT.​

Answers

Answered by amitnrw
9

Given : PT is a tangents at T to a circle whose centre is O and radius 20cm

OP intersect circle at M

MP = 9 cm

To Find :  PT

Solution:

OT =  OM = Radius = 20 cm

OP = OM + MP

=> OP = 20 + 9

=> OP = 29 cm

OP² =  OT² + PT²

=> 29² = 20² + PT²

=> PT² = 29² - 20²

=> PT² = (29 + 20)(29 - 20)

=> PT² = 49 (9)

=> PT = 7(3)

=> PT = 21

PT = 21 cm

Learn More:

In the given fig AM,ANand BC fare tangents to the circle find the ...

brainly.in/question/9909143

In the figure o is the center of circle.radius of circle is 3.1cm and pa is ...

brainly.in/question/7157405

Answered by akshitanegi26
5

 \huge \star \mid \cal \colorbox{yellow}{ANSWER}\mid \star

 \bf \: Given : \rm \: PT \: is \: a \: tangent. \\  \rm \: Radius = 20cm \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \rm \: MP = 9cm \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \bf \: To \:  Find : \rm \: PT

 \bf \: Solution : \rm \: OT = OM = Radius = 20cm \\  \rm \: OP = OM + MP \\  \rm</p><p>OP = 20 + 9  \\  \rm \  \:  \:  \:  \:  </p><p>OP = 29cm \:  \:  \:  \:  \: </p><p></p><p>

 \:  \:  \:  \:   \rm \: OP² = PT²+PT² \\  \rm  \:  \:  \:  \:  \:  </p><p>29²= 20²+PT²\\  \rm \:  \:  \: </p><p>PT²=29²-20²\\  \rm</p><p> \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: PT²=(29+20)(29-20)\\  \rm </p><p>PT²=49(9)\\  \rm </p><p>PT²=7(3)\\  \rm </p><p>\bf PT = 21cm\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Similar questions