Math, asked by bagavathi2004, 1 year ago

PT----Sec^4 theta - sec^2 theta = 1-cos theta/1+cos theta


monisha470384: Even I need this question's answer...math exam is on 7th...
adtprasad: I cant find this answer either.... please answer if someone knows

Answers

Answered by MaheswariS
0

Answer:

sec^4\theta-sec^2\theta=\frac{2(1-cos2\theta)}{(1+cos2\theta)^2}

Step-by-step explanation:

The identity

Sec^4\theta - sec^2\theta = \frac{1-cos\theta}{1+cos\theta} does not hold for \theta=\frac{\pi}{4}

I think your question may be

sec^4\theta-sec^2\theta=\frac{2(1-cos2\theta)}{(1+cos2\theta)^2}

Formula used:

cos2A=2\:cos^2A-1\\\\cos2A=\frac{1-tan^2A}{1+tan^2A}

Now,

sec^4\theta-sec^2\theta\\\\=sec^2\theta(sec^2\theta-1)\\\\=sec^2\theta.tan^2\theta\\\\=\frac{tan^2\theta}{cos^2\theta}\\\\=\frac{\frac{1-cos2\theta}{1+cos2\theta}}{\frac{1+cos2\theta}{2}}\\\\=\frac{2(1-cos2\theta)}{(1+cos2\theta)^2}

Similar questions