English, asked by NITHISH5643, 8 months ago

ptove that 7-2root3​

Answers

Answered by LastShinobi
2

Answer:

Show that 7+2 under root3 is irrational no

let 7+2under root 3 be an rational number . Then it must satisfy the condition of rational number that is 7+2 under root 3=p/q or 2 under root 3 = p/q-7.

p-7q÷2q =under root 3 . Hence under root 3 is an irrational number and p-7q÷2q is an rational number .

Answered by Anonymous
1

\huge\bold{Question :}

If tan θ = ¹/√7 then , show that \sf \dfrac{csc^2\theta-sec^2\theta}{csc^2\theta+sec^2\theta}=\dfrac{3}{4}

\huge\bold{Solution :}

★══════════════════════★

\sf tan\ \theta=\dfrac{1}{\sqrt{7}}

:\to \sf tan^2\theta=\dfrac{1}{(\sqrt{7})^2}

:\to \sf \textsf{\textbf{\pink{tan$^\text{2} \boldsymbol \theta\ $ =\ $\dfrac{\text{1}}{\text{7}}$}}}\ \; \bigstar

\sf \dfrac{1}{cot\ \theta}=\dfrac{1}{\sqrt{7}}

:\to \sf cot\ \theta=\sqrt{7}

:\to \sf cot^2\theta=(\sqrt{7})^2

:\to \sf \textsf{\textbf{\green{cot$^\text{2}\ \boldsymbol \theta $\ =\ 7}}}\ \; \bigstar

★══════════════════════★

LHS

:\to \bf \blue{\dfrac{csc^2\theta-sec^2\theta}{csc^2\theta+sec^2\theta}}

From Trigonometric identities ,

csc²θ = 1 + cot²θ

sec²θ = 1 + tan²θ

:\to \sf \dfrac{(1+cot^2\theta)-(1+tan^2\theta)}{(1+cot^2\theta)+(1+tan^2\theta)}

tan²θ = ¹/₇

cot²θ = 7

:\to \sf \dfrac{(1+7)-(1+\frac{1}{7})}{(1+7)+(1+\frac{1}{7})}

:\to\ \sf \dfrac{8-\frac{8}{7}}{8+\frac{8}{7}}

:\to\ \sf \dfrac{48}{64}

:\to\ \textsf{\textbf{\orange{$\dfrac{\text{3}}{\text{4}}$}}}\ \; \bigstar

Similar questions