Ptove that sinB=sin^2A+sin^2(A-B)-2sinAcosBsin(A-B)
Answers
Answered by
33
i) Please present the question leaving space between one part and the
other part, so that it will not get truncated. The present question is
in incomplete form.
It should be:
Prove that: sin²B = sin²A + sin²(A - B) - 2*sin(A)*cos(B)*sin(A - B)
ii) Let me prove the same by taking Right side = Left side.
Applying 2sin(A)*cos(B) = sin(A + B) + sin(A - B), Right side is:
= sin²A + sin²(A - B) - sin(A - B){sin(A + B) + sin(A - B)}
= sin²A + sin²(A - B) - sin(A + B)*sin(A - B) - sin²(A - B)
= sin²A - {sin(A + B)*sin(A - B)}
= sin²A - sin²A + sin²B [Since sin(A + B)*sin(A - B) = sin²A - sin²B]
= sin²B = Left side [Proved]
Proof for sin(A + B)*sin(A - B) = sin²A - sin²B:
sin(A + B)*sin(A - B) = {sin(A)*cos(B) + cos(A)*sin(B)}*{sin(A)*cos(B) - cos(A)*sin(B)}
= sin²A*cos²B - cos²A*sin²B [Applying (a + b)(a - b) = a² - b²]
= sin²A(1 - sin²B) - (1 - sin²A)sin²B
= sin²A - sin²A*sin²B - sin²B + sin²A*sin²B
= sin²A - sin²B
It should be:
Prove that: sin²B = sin²A + sin²(A - B) - 2*sin(A)*cos(B)*sin(A - B)
ii) Let me prove the same by taking Right side = Left side.
Applying 2sin(A)*cos(B) = sin(A + B) + sin(A - B), Right side is:
= sin²A + sin²(A - B) - sin(A - B){sin(A + B) + sin(A - B)}
= sin²A + sin²(A - B) - sin(A + B)*sin(A - B) - sin²(A - B)
= sin²A - {sin(A + B)*sin(A - B)}
= sin²A - sin²A + sin²B [Since sin(A + B)*sin(A - B) = sin²A - sin²B]
= sin²B = Left side [Proved]
Proof for sin(A + B)*sin(A - B) = sin²A - sin²B:
sin(A + B)*sin(A - B) = {sin(A)*cos(B) + cos(A)*sin(B)}*{sin(A)*cos(B) - cos(A)*sin(B)}
= sin²A*cos²B - cos²A*sin²B [Applying (a + b)(a - b) = a² - b²]
= sin²A(1 - sin²B) - (1 - sin²A)sin²B
= sin²A - sin²A*sin²B - sin²B + sin²A*sin²B
= sin²A - sin²B
Similar questions