Math, asked by mnmshajahan9581, 3 months ago

(px-y)(py+x)=2p clairuates equation

Answers

Answered by aaroo199413
1

(px−y)(x−py)=2p

(pxy-y^2)(x-py)=2py(pxy−y

2

)(x−py)=2py

({py \over x}\cdot x^2-y^2)(1-{py \over x})=2{py \over x}(

x

py

⋅x

2

−y

2

)(1−

x

py

)=2

x

py

{py \over x}\cdot x^2-y^2=\dfrac{2\dfrac{py}{x}}{1-\dfrac{py}{x}}

x

py

⋅x

2

−y

2

=

1−

x

py

2

x

py

y^2={py \over x}\cdot x^2-\dfrac{2\dfrac{py}{x}}{1-\dfrac{py}{x}}y

2

=

x

py

⋅x

2

1−

x

py

2

x

py

Let x^2=u, y^2=v.x

2

=u,y

2

=v. Then

du=2xdx, dv=2ydydu=2xdx,dv=2ydy

p=\dfrac{dy}{dx}=\dfrac{2x}{2y}\cdot \dfrac{dv}{du}=\dfrac{\sqrt{u}}{\sqrt{v}}\cdot P, P=\dfrac{dv}{du}p=

dx

dy

=

2y

2x

du

dv

=

v

u

⋅P,P=

du

dv

{py \over x}=\dfrac{dv}{du}=P

x

py

=

du

dv

=P

Substitute

v=Pu-\dfrac{2P}{1-P}v=Pu−

1−P

2P

We have Clairaut Equation

v=Pu+f(P)v=Pu+f(P)

The general solution is given by v=Cu+f(C), C v=Cu+f(C),C is an arbitrary constant.

Therefore

v=Cu-\dfrac{2C}{1-C}, C \ \text{is arbitrary constant}, C\not=1v=Cu−

1−C

2C

,C is arbitrary constant,C

=1

The general solution is

y^2=Cx^2-\dfrac{2C}{1-C}, \ C \ \text{is arbitrary constant}, C\not=1y

2

=Cx

2

1−C

2C

, C is arbitrary constant,C

=1

Answered by crazyme0303
0

Answer:

Solve the equation

(px-y)(py+x)= 2p put X=x^2 Y =y^2

Similar questions