Math, asked by MiniDoraemon, 2 months ago

PYQ jee mains

Chapter:- Function​

Attachments:

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Consider,

\rm :\longmapsto\:R_1 =  \{(a,b) \in \:  {R}^{2} :  {a}^{2} +  {b}^{2} \in \:  Q \}

We know,

Relation R is said to be transitive iff (a, b) ∈ R and (b, c) ∈ R then (a, c) ∈ R.

Now,

Let we assume a, b, c ∈ R

Let

\rm :\longmapsto\:a = 1 +  \sqrt{2} \in \: R

\rm :\longmapsto\:b = 1  -   \sqrt{2} \in \: R

\rm :\longmapsto\:c =  {8}^{ \frac{1}{4} }

Now,

Consider,

\rm :\longmapsto\: {a}^{2} +  {b}^{2}

\rm \:  =  \: {(1 +  \sqrt{2} )}^{2} +  {(1 -  \sqrt{2} )}^{2}

\rm \:  =  \:1 + 2 + 2 \sqrt{2}  + 1 + 2 - 2 \sqrt{2}

\rm \:  =  \:6

\rm :\implies\: {a}^{2} +  {b}^{2} \in \: Q

\rm :\implies\:(a,b) \:  \in \: R

Consider

\rm :\longmapsto\: {b}^{2} +  {c}^{2}

\rm \:  =  \: {(1 - \sqrt{2} )}^{2}  +  {8}^{ \frac{1}{2} }

\rm \:  =  \:1 + 2 - 2 \sqrt{2} +  \sqrt{8}

\rm \:  =  \:3 - 2 \sqrt{2} +  \sqrt{2 \times 2 \times 2}

\rm \:  =  \:3 - 2 \sqrt{2} +  2\sqrt{2 }

\rm \:  =  \:3

\rm :\implies\: {b}^{2} +  {c}^{2} \in \: Q

\rm :\implies\:(b,c) \:  \in \: R

Now,

Consider,

\rm :\longmapsto\: {a}^{2} +  {c}^{2}

\rm \:  =  \: {(1 + \sqrt{2} )}^{2}  +  {8}^{ \frac{1}{2} }

\rm \:  =  \:1 + 2 + 2 \sqrt{2} +  \sqrt{8}

\rm \:  =  \:3  + 2 \sqrt{2} +  \sqrt{2 \times 2 \times 2}

\rm \:  =  \:3  + 2 \sqrt{2} +  2\sqrt{2 }

\rm \:  =  \:3  + 2 \sqrt{2}

\rm :\implies\: {a}^{2} +  {c}^{2}  \cancel\in \: Q

\rm :\implies\:(a,c) \:   \cancel\in \: R

Hence,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underbrace{ \boxed{ \bf \: R_1 \: is \: not \: transitive}}

Consider,

\rm :\longmapsto\:R_2 =  \{(a,b) \in \:  {R}^{2} :  {a}^{2} +  {b}^{2} \cancel \in \:  Q \}

Let assume that

\rm :\longmapsto\:a = 1 +  \sqrt{2} \in \: R

\rm :\longmapsto\:b = \sqrt{2} \in \: R

\rm :\longmapsto\:c = 1 - \sqrt{2} \in \: R

Consider,

\rm :\longmapsto\: {a}^{2} +  {b}^{2}

\rm \:  =  \: {(1 +  \sqrt{2}) }^{2}  +  {( \sqrt{2} )}^{2}

\rm \:  =  \:1 + 2 + 2 \sqrt{2} + 2

\rm \:  =  \:5 + 2 \sqrt{2}

\rm :\implies\: {a}^{2} +  {b}^{2} \cancel\in \: Q

\rm :\implies\:(a,b) \:  \in \: R

Consider,

\rm :\longmapsto\: {b}^{2} +  {c}^{2}

\rm \:  =  \: {(\sqrt{2}) }^{2}  +  {( 1 - \sqrt{2} )}^{2}

\rm \:  =  \:2 + 1 + 2 - 2 \sqrt{2}

\rm \:  =  \:5  - 2\sqrt{2}

\rm :\implies\: {b}^{2} +  {c}^{2} \cancel\in \: Q

\rm :\implies\:(b,c) \:  \in \: R

Consider,

\rm :\longmapsto\: {a}^{2} +  {c}^{2}

\rm \:  =  \: {(1 +  \sqrt{2} )}^{2} +  {(1 -  \sqrt{2} )}^{2}

\rm \:  =  \:1 + 2 + 2 \sqrt{2}  + 1 + 2 - 2 \sqrt{2}

\rm \:  =  \:6

\rm :\implies\: {a}^{2} +  {c}^{2} \in \: Q

\rm :\implies\:(a,c) \:   \cancel\in \: R

Hence,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underbrace{ \boxed{ \bf \: R_2 \: is \: not \: transitive}}

Therefore,

 \:  \:  \:  \:  \:  \: \underbrace{ \boxed{ \bf\implies \:\bf \: Option \: (a) \: is \: correct \quad}}

Similar questions