Math, asked by xhaskchakcha, 6 months ago

Pythagorean theorem and trig!

Attachments:

Answers

Answered by Anonymous
22

15. \bf{\underline{Given:-}}

  • \sf{Hypotenuse = \sqrt{10}}
  • \sf{Length\:of\:one\:leg = \sqrt{3}}

\bf{\underline{To\:Find:-}}

Length of other leg.

\bf{\underline{Assumption:-}}

Let one of the given legs be base.

Let the other leg (i.e., Perpendicular) be x.

\bf{\underline{Solution:-}}

According to Pythagoras Theorem,

\sf{(Hypotenuse)^2 = (Base)^2 + (Perpendicular)^2}

\sf{\implies (Perpendicular)^2 = (Hypotenuse)^2 - (Base)^2}

\sf{\implies Perpendicular = \sqrt{(Hypotenuse)^2 - (Base)^2}}

\sf{\implies Perpendicular = \sqrt{(\sqrt{10})^2 - (\sqrt{3})^2}}

\sf{\implies Perpendicular = \sqrt{10-3}}

\sf{\implies Perpendicular = \sqrt{7}}

\sf{\therefore} The length of other leg is \sf{\sqrt{7}}

\sf{\underline{Therefore,\: Option\: [1]\: is\: the\: correct \:answer.}}

_________________________________________

16. \bf{\underline{Given:-}}

  • Hypotenuse = 25
  • Base = 24

\bf{\underline{To\:Find:-}}

Area of the right triangle.

\bf{\underline{Solution:-}}

According to Pythagoras Theorem,

\sf{(Hypotenuse)^2 = (Perpendicular)^2 - (Base)^2}

\sf{implies (Perpendicular)^2 = (Hypotenuse)^2 - (Base)^2}

\sf{\implies Perpendicular = \sqrt{(25)^2-(24)^2}}

By using the identity \sf{\underline{(a)^2-(b)^2 = (a+b)(a-b)}}

\sf{\implies Perpendicular = \sqrt{(25+24)(25-24)}}

\sf{\implies Perpendicular = \sqrt{49\times1}}

\sf{\implies Perpendicular = \sqrt{49}}

\sf{\implies Perpendicular = 7}

Now,

\sf{Semi-perimeter\:of\:the\:triangle = \dfrac{a+b+c}{2}}

\sf{Here \:a = 25\:b=24\:c=7}

Therefore,

\sf{s = \dfrac{25+24+7}{2}}

\sf{\implies s = \dfrac{56}{2}}

\sf{\implies s = 28}

According to Heron's Formula,

\sf{Area = \sqrt{s(s-a)(s-b)(s-c)}}

= \sf{Area = \sqrt{28(28-25)(28-24)(28-7)}}

= \sf{Area = \sqrt{28\times3\times4\times21}}

= \sf{Area = \sqrt{4\times7\times3\times4\times3\times7}}

= \sf{Area = 3\times4\times7}

= \sf{Area = 84\:sq.units}

\sf{\underline{Therefore, \:Option\: [2] \:is \:the\: correct \:answer.}}

\bf{\underline{Additional\:Information:-}}

  • We can also find the area of the triangle by applying the Formula \sf{Area = \dfrac{1}{2}\times base\times height\:\:sq.units}

Pythagoras theorem states that the measure of Hypotenuse of a right-angled triangle is always equal to the sum of squares of the base and perpendicular.

Answered by rosoni28
0

15. \huge\bf{\underline{Given:-}}

\boxed{Hypotenuse = \sqrt{10}}

\sf{Length\:of\:one\:leg =\sqrt{3}}

\bf\huge{\underline{To\:Find:-}}

\bf{\underline{Assumption:-}}

\huge\boxed{\underline{Solution:-}}

According \: to \: Pythagoras \: Theorem,

\huge\boxed{(Hypotenuse)^2 = (Base)^2 + (Perpendicular)^2}

\boxed{\implies (Perpendicular)^2 = (Hypotenuse)^2 - (Base)^2}

\boxed{\implies Perpendicular = \sqrt{(Hypotenuse)^2 - (Base)^2}}

\boxed{\implies Perpendicular = \sqrt{(\sqrt{10})^2 - (\sqrt{3})^2}}

\boxed{\implies Perpendicular = \sqrt{10-3}}

\boxed{\implies Perpendicular = \sqrt{7}}

\sf{\therefore}The \: length \: of \: other \: leg \: is \sf{\sqrt{7}}

\huge\boxed{\underline{Therefore,\: Option\: [1]\: is\: the\: correct \:answer.}}

Similar questions