Q-1-A: Find the magnitude of two forces such that if they act at right angles, the resultant is √10 (root ten) N. But if they act at 60 degrees their resultant is √13(root thirteen) N.
Answers
Given
- If they act in right angle the resultant is √10
- If they act in 60° the resultant is √13
To Find
- Magnitude of the forces
Solution
☯ R = √A²+B²+2ABcosθ
━━━━━━━━━━━━━━━━━━━━━━━━━
✭ According to the Question :
In Case 1
→ R = √A²+B²+2ABcosθ
→ √10 = √A²+B²+2AB cos 90°
→ 10 = A²+B²+2AB × 0
→ 10 = A²+B²+0
→ 10 = A²+B² -eq(1)
In Case 2
→ R = √A²+B²+2ABcosθ
→ √13 = √A²+B²+2AB × cos 60°
→ 13 = A²+B²+2AB × 0.5
→ 13 = 10 + AB
→ 13-10 = AB
→ AB = 3 -eq(2)
━━━━━━━━━━━━━━━━━━━━━━━━━
Now,
→ (A+B)² = A²+B²+2AB
→ (A+B)² = 10 + 2(3)
→ (A+B)² = 10 + 6
→ A+B + √16
→ A+B = 4 -eq(3)
Similarly,
→ (A-B)² = A²+B²-2AB
→ (A-B)² = 10 - 2(3)
→ (A-B)² = 10 - 6
→ A-B = √4
→ A-B = 2 -eq(4)
━━━━━━━━━━━━━━━━━━━━━━━━━
Subtracting eq(4) from eq(3)
→ 2B = 2
→ B = 1 N
From eq(4)
→ A-1 = 2
→ A = 2+1
→ A = 3 N
Let the two forces be 'A' and 'B'.
➪ Resultant ( R ) = √A² + B² + 2ABcos∅
➪ √10 = √A² + B² + 2ABcos90
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ[ cos90 = 0 ]
➪ 10 = A² + B² ㅤㅤㅤㅤ(1)
Now , when the angle between these two forces is 60° , resultant is √13.
➪ √13 = √A² + B² + 2AB cos60
➪ 13 = A² + B² + 2AB(1/2)
➪ 13 = 10 + AB
➪ AB = 3 ㅤㅤㅤㅤㅤㅤㅤ(2)
▬▬▬▬▬▬▬▬▬▬▬▬
Now ,
➣ ( A - B )² = A² + B² -2AB
➣ ( A - B )² = 10 - 2(3)
➣ ( A - B )² = 10 - 6
➣ ( A - B )² = 4
➣ A - B = 2 ㅤ ㅤ ㅤ ㅤ ㅤㅤ(3)
Also,
➣ ( A + B )² = A² + B² + 2AB
➣ ( A + B )² = 10 + 2(3)
➣ ( A + B )² = 16
➣ A + B = 4 ㅤㅤㅤㅤㅤㅤㅤ(4)
▬▬▬▬▬▬▬▬▬▬▬▬
Adding equation (3) and (4) ,
⇢ A - B + A + B = 2 + 4
⇢ 2A = 6
⇢ A = 3N
▬▬▬▬▬▬▬▬▬▬▬▬
Putting A = 3 in eqⁿ (3),
⇢ A - B = 2
⇢ 3 - B = 2
⇢ B = 3-2
⇢ B = 1N
Therefore , the two forces are 3N and 1N.