Physics, asked by shudhanshu001, 19 days ago

Q. 1. Determine the center of gravity and area moment of inertia about centroidal axes of shaded area as shown in Figure 1. [10] 10 cm 10 cm 4 cm 5 cm X 20 cm Figure 1.​

Answers

Answered by 8177814765
0

Explanation:

an atomic clock makes use of

Answered by sarahssynergy
0

Given,

              Breadth of triangle (b) = 20cm

              total height of triangle (h) = 25cm

To Find:

  • The centre of gravity and area moment of inertia about centroidal axes of shaded area?

Explanation:

as we know that,

                              Area of triangle = \frac{1}{2}×b×h

                                                         = \frac{1}{2}×20×25

                                                         = 250 cm^{2}

Now,

as length and width has given of the shaded area,

                          length(l) = 10cm

                          breadth(b) = 4cm

                Area of rectangle = l × b

                                              = 10×4

                                              = 40 cm^{2}

      Area of shaded region = Area of triangle - Area of rectangle

                                             = 250 - 40 cm^{2}

                                             = 210 cm^{2}

Hence the area moment of inertia about centroidal axes of the shaded region is 210cm^{2}

Similar questions