Math, asked by Anonymous, 5 months ago


Q -1) Evaluate :-


{ \bf{ \int \frac{1}{ \cos {}^{4}x \:  + \:   \sin {}^{4}x  }  dx}}

Answers

Answered by shadowsabers03
127

We're given to evaluate,

\displaystyle\longrightarrow I=\int\dfrac{1}{\cos^4x+\sin^4x}\ dx

Dividing numerator and denominator by \cos^4x,

\displaystyle\longrightarrow I=\int\dfrac{\left(\dfrac{1}{\cos^4x}\right)}{\left(\dfrac{\cos^4x+\sin^4x}{\cos^4x}\right)}\ dx

or,

\displaystyle\longrightarrow I=\int\dfrac{\sec^4x}{1+\tan^4x}\ dx

\displaystyle\longrightarrow I=\int\dfrac{\sec^2x\cdot\sec^2x}{1+\tan^4x}\ dx

Since \sec^2x=1+\tan^2x,

\displaystyle\longrightarrow I=\int\dfrac{1+\tan^2x}{1+(\tan^2x)^2}\cdot\sec^2x\,dx

\displaystyle\longrightarrow I=\int\dfrac{1+\tan^2x}{(1+\tan^2x)^2-2\tan^2x}\cdot\sec^2x\,dx\quad\quad\dots(1)

Substitute,

\longrightarrow u=\tan x

\longrightarrow du=\sec^2x\ dx

Then (1) becomes,

\displaystyle\longrightarrow I=\int\dfrac{1+u^2}{(1+u^2)^2-2u^2}\ du

\displaystyle\longrightarrow I=\int\dfrac{1+u^2}{(1+u^2)^2-\left(u\sqrt2\right)^2}\ du

Factorising the denominator,

\displaystyle\longrightarrow I=\int\dfrac{1+u^2}{(1+u\sqrt2+u^2)(1-u\sqrt2+u^2)}\ du

or,

\displaystyle\longrightarrow I=\dfrac{1}{2}\int\dfrac{\left(1+u\sqrt2+u^2\right)+\left(1-u\sqrt2+u^2\right)}{(1+u\sqrt2+u^2)(1-u\sqrt2+u^2)}\ du

\displaystyle\longrightarrow I=\dfrac{1}{2}\int\left(\dfrac{1}{u^2+u\sqrt2+1}+\dfrac{1}{u^2-u\sqrt2+1}\right)\ du

\displaystyle\longrightarrow I=\dfrac{1}{2}\int\dfrac{1}{u^2+u\sqrt2+1}\ du+\dfrac{1}{2}\int\dfrac{1}{u^2-u\sqrt2+1}\ du

\displaystyle\longrightarrow I=\dfrac{1}{2}\int\dfrac{1}{\left(u+\dfrac{1}{\sqrt2}\right)^2+\left(\dfrac{1}{\sqrt2}\right)^2}\ du+\dfrac{1}{2}\int\dfrac{1}{\left(u-\dfrac{1}{\sqrt2}\right)^2+\left(\dfrac{1}{\sqrt2}\right)^2}\ du

We can directly apply this formula,

  • \displaystyle\int\dfrac{1}{(ax+b)^2+c^2}\ dx=\dfrac{1}{ac}\tan^{-1}\left(\dfrac{ax+b}{c}\right)+C

Consider the first integral (ignoring the coefficient),

\displaystyle\longrightarrow I_1=\int\dfrac{1}{\left(u+\dfrac{1}{\sqrt2}\right)^2+\left(\dfrac{1}{\sqrt2}\right)^2}\ du

On comparing with the formula, we get,

  • a=1
  • x=u
  • b=\dfrac{1}{\sqrt2}
  • c=\dfrac{1}{\sqrt2}

Thus,

\displaystyle\longrightarrow I_1=\dfrac{1}{1\cdot\dfrac{1}{\sqrt2}}\tan^{-1}\left(\dfrac{u+\dfrac{1}{\sqrt2}}{\dfrac{1}{\sqrt2}}\right)+C

\displaystyle\longrightarrow I_1=\sqrt2\tan^{-1}\left(u\sqrt2+1\right)+C

Similarly, the second integral,

\displaystyle\longrightarrow I_2=\int\dfrac{1}{\left(u-\dfrac{1}{\sqrt2}\right)^2+\left(\dfrac{1}{\sqrt2}\right)^2}\ du

will be,

\displaystyle\longrightarrow I_2=\sqrt2\tan^{-1}\left(u\sqrt2-1\right)+C

Hence,

\displaystyle\longrightarrow I=\dfrac{1}{2}\left[\sqrt2\tan^{-1}\left(u\sqrt2+1\right)+\sqrt2\tan^{-1}\left(u\sqrt2-1\right)\right]+C

\displaystyle\longrightarrow I=\dfrac{1}{\sqrt2}\left[\tan^{-1}\left(u\sqrt2+1\right)+\tan^{-1}\left(u\sqrt2-1\right)\right]+C

\displaystyle\longrightarrow I=\dfrac{1}{\sqrt2}\tan^{-1}\left(\dfrac{u\sqrt2+1+u\sqrt2-1}{1-\left(u\sqrt2+1\right)\left(u\sqrt2-1\right)}\right)

\displaystyle\longrightarrow I=\dfrac{1}{\sqrt2}\tan^{-1}\left(\dfrac{2u\sqrt2}{2-2u^2}\right)+C

\displaystyle\longrightarrow I=\dfrac{1}{\sqrt2}\tan^{-1}\left(\dfrac{u\sqrt2}{1-u^2}\right)+C

Undoing substitution u=\tan x,

\displaystyle\longrightarrow\underline{\underline{I=\dfrac{1}{\sqrt2}\tan^{-1}\left(\dfrac{\sqrt2\tan x}{1-\tan^2x}\right)+C}}


amansharma264: Superb
MrSanju0123: Amazing Answer!
sreekarreddy91: Superb
Anonymous: Thnx for your Answer !
Similar questions