Math, asked by Anonymous, 5 months ago

Q-1) Find :-

{ \bf{∫  \frac{2x}{(x {}^{2} + 1)(x {}^{2}   + 2) {}^{2}  }dx}}

Answers

Answered by Anonymous
64

Explanation,

\displaystyle \tt \int \dfrac{2x}{(x {}^{2} + 1)(x {}^{2}  + 2) {}^{2}  } dx \\  \\  \\  \leadsto  \displaystyle2 \tt \int  \dfrac{x}{( {x}^{2}  + 1)(x {}^{2} + 2) {}^{2}  } dx \\  \\  \\ \tt \:  Now,  \: take  \: the \:  partial  \:  fraction. \\  \\  \\  \tt  \frac{x}{x {}^{2} - 1 }  -   \frac{x}{x {}^{2} + 2 }  -  \dfrac{x}{(x {}^{2} + 2) {}^{2}  }    \\  \\  \\ \tt \leadsto \displaystyle2 \tt  \int \frac{x}{x {}^{2} - 1 } -   \frac{x}{x {}^{2} + 2 }  -   \dfrac{x}{(x {}^{2} + 2) {}^{2}  } dx \\  \\  \\ \tt Applying  \: sum \:  rule,  \: we \:  get;  \\  \\  \\   \leadsto\displaystyle2 \tt \int  \frac{x}{x {}^{2} - 1 } dx -  \int  \frac{x}{x {}^{2} + 2 } dx  -  \int \dfrac{x}{(x {}^{2} + 2) {}^{2}  } dx \\  \\  \\ \leadsto \tt \: 2( \dfrac{1}{2}ln|x {}^{2}  + 1| -  \dfrac{1}{2}ln |x {}^{2}  - 2| -  \bigg( -  \dfrac{ 1 }{2(x {}^{2} - 2) }  \bigg) \\  \\  \\  \leadsto \tt  \:  ln|x {}^{2}  + 1|  -  ln|x {}^{2}  + 2|   +  \frac{1}{x {}^{2} + 2 }  \\  \\  \\  \leadsto \underline{ \boxed{ \tt   ln|x {}^{2}  + 1|  -  ln|x {}^{2}  + 2|   + \frac{1}{x {}^{2} + 2 }  + c}}


ItzMysticalBoy: Welcome janab :)
Anonymous: Wrong Method Bro
Anonymous: yes bro i am 100% agree with you But bro aap hame explain kar sakte ho ... after partial fraction jo likha hai usska baad wala step wala step
Anonymous: Any ways @itzRaaz bro . your answer is verified its means your answer is correct
Anonymous: Nice lomri (. ❛ ᴗ ❛.)
Answered by Anonymous
24

Solution

  \implies\tt  \int \dfrac{2x}{( {x}^{2}  + 1)( {x}^{2} + 2)^{2}  } dx \\

Now Using Substitution Method

 \tt \implies \: Let ,\:  \:  \:  {x}^{2}  + 2 = t

 \implies \tt \:  \dfrac{d( {x}^{2} + 2) }{dx}  =  \dfrac{dt}{dx}

 \tt \implies \: 2x =  \dfrac{dt}{dx}

 \tt \implies(2x)dx = dt

Now Put the value

\implies\tt  \int \dfrac{2x}{( {x}^{2}  + 1)( {x}^{2} + 2)^{2}  } dx \\

To eliminate x² + 1 , We can write as

 \tt \implies \:  {x}^{2}  + 2 = t

 \tt \implies \:  {x}^{2}  + 1 + 1 = t

 \implies \tt {x}^{2}  + 1 = t - 1

Now we can write as

 \tt \implies \:  \int \dfrac{dt}{(t - 1) {t}^{2} }  \\

 \tt \implies \:  \int \dfrac{t - (t - 1)}{(t - 1) {t}^{2} }  dt\\

 \tt \implies \:  \int \dfrac{t}{(t - 1) {t}^{2} } dt -  \int \dfrac{(t - 1)}{(t - 1) {t}^{2} } dt \\

 \tt \implies  \int \dfrac{dt}{(t - 1)t}  -  \int \dfrac{1}{ {t}^{2} } dt \\

 \tt \implies \int \dfrac{t - (t - 1)}{(t - 1)t} dt -  \int {t}^{ - 2} dt \\

 \tt \implies \:  \int \frac{t}{(t - 1)t} dt -  \int \frac{(t - 1)}{t(t - 1)} dt  -  \bigg( \dfrac{t {}^{ - 2 + 1} }{ - 2 + 1}  \bigg) + c \\

 \tt \implies \int \dfrac{dt}{(t - 1)}  -  \int \dfrac{1}{t} dt +  \dfrac{1}{t}   + c\\

 \tt \implies log |t - 1|  - log |t|  +  \dfrac{1}{t}  + c

Now put the value of t = x² + 2

 \tt \implies \: log | {x}^{2}  + 2 - 1|    -  log | {x}^{2} + 2 |  +  \dfrac{1}{ {x}^{2} + 2 }  + c

 \tt \implies \: log | {x}^{2}  +  1|   -  log | {x}^{2} + 2 |  +  \dfrac{1}{ {x}^{2} + 2 }  + c

Answer

\tt \implies \: log | {x}^{2}    +   1|   -  log | {x}^{2} + 2 |  +  \dfrac{1}{ {x}^{2} + 2 }  + c


Anonymous: Thnx❤️
Anonymous: Welcome ❤
Anonymous: Really osm :smile: ♥️
Anonymous: Superb, Excellent answer ✌
Anonymous: Perfect !!
Anonymous: Thank you @prashansa2008 @fiza100 @itzbeautyqueen23 @itzRaaz
Similar questions