Math, asked by sunahibaifat, 1 day ago

Q-1 Find the altitude of a trapezium, the sum of the lengths of whose base is 11 cm and whose area is 26cm cube?
Q-2Find the area of a rhombus whose diagonals are of measurements 6 cm and 8 cm?​

Answers

Answered by Anonymous
57

 \qquad \; \; {\orange{\bigstar \; \; {\red{\underbrace{\underline{\blue{\sf{ Information \; provided \; in \: above \: question  }}}}}}}}

☆The sum of the lengths of trapezium base is 11 cm and whose area is 26cm cube

 \qquad \; \; {\orange{\bigstar \; \; {\red{\underbrace{\underline{\green{\sf{ What \; we \; have \: to \: find  \:  out  }}}}}}}}

☆ The Altitude of the trapezium

 \dag Solution :

 \qquad \; \; {\orange{\bigstar \; \; {\red{\underbrace{\underline{\pink{\sf{Assumption}}}}}}}}

☆ Let the altitude of the trapezium be h cm

 \dag We have ,

 : \implies \rm{Area  \: of \:  trapezium  =  {26 \: cm}^{2} }

 \qquad \; \; {\orange{\bigstar \; \; {\red{\underbrace{\underline{\purple{\sf{So}}}}}}}}

 : \implies \rm{ \dfrac{1}{2} \times   \bigg(Sum \:  of \:  the \:  base  \bigg)\times  Altitude  = 26}

 : \implies \rm{ \dfrac{1}{2} \times    11\times  Altitude  = 26}

 : \implies \rm{Altitude  =  \dfrac{26 \times 2}{11} } \: cm

 : \implies \rm{Altitude  = 4.72\:  cm }

 \qquad \; \; {\orange{\bigstar \; \; {\red{\underbrace{\underline{\blue{\sf{Therefore}}}}}}}}

 \therefore \; Hence,the altitude of the trapezium is

 \qquad \; \; {\orange{\bigstar \; \; {\red{\underbrace{\underline{\purple{\sf{Altitude = 4.72 \: cm}}}}}}}}

 \\ \qquad{\rule{200pt}{2pt}}

 \qquad \; \; {\orange{\bigstar \; \; {\red{\underbrace{\underline{\blue{\sf{ Information \; provided \; in \: above \: question  }}}}}}}}

☆The diagonals of rhombus are of measurements 6 cm and 8 cm

 \qquad \; \; {\orange{\bigstar \; \; {\red{\underbrace{\underline{\green{\sf{ What \; we \; have \: to \: find  \:  out  }}}}}}}}

☆ The area of that rhombus

 \dag Solution :

 \qquad \; \; {\orange{\bigstar \; \; {\red{\underbrace{\underline{\pink{\sf{Formula \: used}}}}}}}}

 : \implies \rm{Area  \: of \:  rhombus  =   \dfrac{d_{1}\times d_{2}}{2}  }

 \dag Where ,

 : \mapsto \:  \rm{d_{1}\times d_{2}} \: are \: diagonals \: of \: the \: rhombus

 \qquad \; \; {\orange{\bigstar \; \; {\red{\underbrace{\underline{\purple{\sf{So}}}}}}}}

☆ Substitute the given values in above formula and solve

 : \implies \rm{Area  \: of \:  rhombus  =   \dfrac{6\times 8}{2}  }

 : \implies \rm{Area  \: of \:  rhombus  =   \dfrac{48}{2}  }

 : \implies \rm{Area  \: of \:  rhombus  =   24 \:  {cm}^{2}   }

 \qquad \; \; {\orange{\bigstar \; \; {\red{\underbrace{\underline{\blue{\sf{Therefore}}}}}}}}

 \therefore \; Hence,the area of the rhombus is

 \qquad \; \; {\orange{\bigstar \; \; {\red{\underbrace{\underline{\purple{\sf{Area  \: of  \: rhombus = 24 \: c {m}^{2} }}}}}}}}

 \\ \qquad{\rule{200pt}{2pt}}

Similar questions