Math, asked by hellofking397, 2 months ago

Q.1. If f(x) = 5x^6 – 4 tan^4x + 3 cos^2 x, then prove that f(x) is even function.​

Answers

Answered by mathdude500
1

\large\underline{\sf{Given- }}

 \:  \:  \:  \:  \:  \bull \:  \sf \:  \: f(x) =  {5x}^{6}  -  {4tan}^{4} x + 3 {cos}^{2}x

\large\underline{\sf{To\:Prove- }}

 \:  \:  \:  \:  \:  \bull \:  \sf \:  \: f(x) \: is \: even \: function.

\large\underline{\sf{Solution-}}

Basic Concept :-

Even Function :-

  • A function f(x) is said to be an even function if f(- x) = f(x).

So, in order to show that given function is even function, we have to prove that f(- x) = f(x).

Let's solve the problem now!!

Given that

\rm :\longmapsto\: \sf \:  \: f(x) =  {5x}^{6}  -  {4tan}^{4} x + 3 {cos}^{2}x

So,

\rm :\longmapsto\:f( - x) = 5 {( - x)}^{6}  - 4 {\bigg( tan( - x)\bigg) }^{4}  + 3 {\bigg(cos( - x) \bigg) }^{2}

\rm :\longmapsto\:f( - x) = 5{x}^{6}- 4 {\bigg(-tanx\bigg) }^{4}  + 3 {\bigg(cosx\bigg) }^{2}

 \because \: \boxed{ \bf \:tan( - x) =  - tanx} \:  \sf \: and \:  \:  \boxed{ \bf \: cos( - x) = cosx}

\rm :\longmapsto\: \sf \:  \: f( - x) =  {5x}^{6}  -  {4tan}^{4} x + 3 {cos}^{2}x

\bf\implies \:f( - x) = f(x)

\bf\implies \:f(x) \: is \: an \: even \: function

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

Odd function :-

  • A function f(x) is said to be an odd function if f(- x) = - f(x).

Periodic function :-

  • A function f(x) is said to be periodic function if there exist a positive real number T such that f(x + T) = f(x).

Even functions is symmetric along y - axis where as odd functions are symmetrical in opposite quadrants.

Similar questions